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Abstract

Given the sustained growth that we are experiencing in the number of SPARQL endpoints available, the need to be
able to send federated SPARQL queries across these has also grown. To address this use case, the W3C SPARQL
working group is defining a federation extension for SPARQL 1.1 which allows for combining graph patterns that can
be evaluated over several endpoints within a single query. In this paper, we describe the syntax of that extension and
formalize its semantics. Additionally, we describe how a query evaluation system can be implemented for that fed-
eration extension, describing some static optimization techniques and reusing a query engine used for data-intensive
science, so as to deal with large amounts of intermediate and final results. Finally we carry out a series of experiments
that show that our optimizations speed up the federated query evaluation process.
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Recent years have witnessed a large and constant
growth in the amount of RDF data available on the Web,
exposed by means of Linked Data-enabled dereference-
able URIs in various formats (such as RDF/XML, Tur-
tle, RDFa, etc.) and – of particular interest for the
present paper – by SPARQL endpoints. Several non-
exhaustive, and sometimes out-of-date or not continu-
ously maintained, lists of SPARQL endpoints or data
catalogs are available in different formats like CKAN1,
The Data Hub2, the W3C wiki3, etc. Most of these
datasets are interlinked, as depicted graphically in the
well-known Linked Open Data Cloud diagram4, which
allows navigating through them and facilitates build-
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ing complex queries by combining data from differ-
ent, sometimes heterogeneous and often physically dis-
tributed datasets.

SPARQL endpoints are RESTful services that accept
queries over HTTP written in the SPARQL query lan-
guage [1, 2] adhering to the SPARQL protocol [3], as
defined by the respective W3C recommendation doc-
uments. However, the current SPARQL recommen-
dation has an important limitation in terms of defin-
ing and executing queries that span across distributed
datasets, since it hides the physical distribution of data
across endpoints, and has normally been used for query-
ing isolated endpoints. Hence users willing to feder-
ate queries across a number of SPARQL endpoints have
been forced to create ad-hoc extensions of the query lan-
guage and protocol, to include additional information
about data sources in the configuration of their SPARQL
endpoint servers [4, 5, 6] or to devise engineering solu-
tions where data from remote endpoints is copied into
the endpoint being queried. Given the need to address
these types of queries, the SPARQL working group has
proposed a query federation extension for the upcoming
SPARQL 1.1 language [7] which is now under discus-
sion in order to generate a new W3C recommendation
in the coming months.5

5It is expected that SPARQL1.1 will be released in June 2012 for
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The federated query extension of SPARQL 1.1 in-
cludes the new SERVICE operator which can also be
used in conjunction with another new operator in the
main SPARQL 1.1 query document: BINDINGS.

Firstly, the SERVICE operator allows for specifying,
inside a SPARQL query, a SPARQL query endpoint to
which a portion of the query will be delegated. This
query endpoint may be known at the time of building
the query, and hence the SERVICE operator will already
specify the IRI of the SPARQL endpoint where it will be
executed; or may be a variable that gets bound at query
execution time after executing an initial SPARQL query
fragment in one of the aforementioned RDF-enabled
data catalogs, so that potential SPARQL endpoints that
can answer the rest of the query can be obtained and
used.

Secondly, the BINDINGS operator allows transfer-
ring results that are used to constrain a query, and which
may come for instance from constraints specified in
user interfaces that then transform these into SPARQL
queries or – particularly, this may be used when imple-
menting federated queries through scripting – from pre-
vious executions of other queries.

In this paper, we propose a syntax and a formaliza-
tion of the semantics of these federation extensions of
SPARQL 1.1 and define the constraints that have to
be considered in their use in order to be able to pro-
vide pragmatic implementations of query evaluators. To
this end, we define notions of service-boundedness and
service-safeness, which ensure that the SERVICE oper-
ator can be safely evaluated.

We implement the static optimizations proposed
in [8], using the notion of well-designed patterns, which
prove to be effective in the optimization of queries that
contain the OPTIONAL operator, the most costly op-
erator in SPARQL [8, 9]. This also has important im-
plications in the number of tuples being transferred
and joined in federated queries, and hence our imple-
mentation benefits from this. Other works have ana-
lyzed adaptive query processing [10, 11] which opti-
mize SPARQL queries by adapting them depending on
the specific conditions of the query/execution environ-
ment.

As a result of our work, we have not only for-
malized the semantics of the SPARQL 1.1 federated
query extension, but we have also implemented a sys-
tem that supports these extensions and makes use of the
discussed optimizations. This system, SPARQL-DQP

most of the documents. As this will be most probably done during the
reviewing time for this paper, we will update the paper accordingly in
case it is accepted.

(which stands for SPARQL Distributed Query Process-
ing), is built on top of the OGSA-DAI and OGSA-
DQP infrastructures [12, 13] that allow dealing with
large amounts of data in distributed settings, support-
ing for example an indirect access mode that is normally
used in the development of data-intensive workflows. In
summary, the main contributions of this paper are:

• A formalization of the semantics of the federation
extension of SPARQL 1.1, based on the current
SPARQL semantics.

• A definition of service-boundedness and service-
safeness conditions so as to ensure a pragmatic
evaluation of these queries.

• A set of static optimizations for these queries, in
the presence of OPTIONAL operators.

• An implementation suited to deal with large-scale
RDF datasets distributed over federated query end-
points.

Organization of the paper. In Section 1, we describe
the syntax and semantics of the SPARQL 1.1 federa-
tion extension. In Section 2, we introduce the notions
of service-boundedness and service-safeness, which en-
sures that the SERVICE operator can be safely evalu-
ated. In Section 3, we present some optimization tech-
niques for the evaluation of the SPARQL 1.1 federated
query extension. Finally, in Section 4 and 5, we present
our implementation as well as an experimental evalua-
tion of it.

1. Syntax and Semantics of SPARQL including the
SPARQL 1.1 Federated Query

In this section, we give an algebraic formalization
of SPARQL 1.1 including the SPARQL 1.1 Federated
Query. We restrict ourselves to SPARQL over simple
RDF, that is, we disregard higher entailment regimes
(see [14]) such as RDFS or OWL. Our starting point is
the existing formalization of SPARQL described in [8],
to which we add the operators SERVICE proposed in
[7] and BINDINGS proposed in [2].

We introduce first the necessary notions about RDF
(taken mainly from [8]). Assume there are pairwise dis-
joint infinite sets I, B, and L (IRIs [15], Blank nodes,
and Literals, respectively). Then a triple (s, p, o) ∈
(I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple, where
s is called the subject, p the predicate and o the object.
An RDF graph is a set of RDF triples.
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Moreover, assume the existence of an infinite set
V of variables disjoint from the above sets, and leave
UNBOUND to be a reserved symbol that does not be-
long to any of the previously mentioned sets.

1.1. Syntax
The official syntax of SPARQL [1] considers opera-

tors OPTIONAL, UNION, FILTER, GRAPH, SELECT
and concatenation via a point symbol (.), to construct
graph pattern expressions. Operators SERVICE is in-
troduced in the SPARQL 1.1 Federated Query extension
and BINDINGS is introduced in the main SPARQL 1.1
query document, the former for allowing users to di-
rect a portion of a query to a particular SPARQL end-
point, and the latter for transferring results that are used
to constrain a query. The syntax of the language also
considers { } to group patterns and some implicit rules
of precedence and association. In order to avoid am-
biguities in the parsing, we follow the approach pro-
posed in [8], and we first present the syntax of SPARQL
graph patterns in a more traditional algebraic formal-
ism, using operators AND (.), UNION (UNION), OPT
(OPTIONAL), FILTER (FILTER), GRAPH (GRAPH)
and SERVICE (SERVICE), then we introduce the syn-
tax of BINDINGS queries, which use the BINDINGS
operator (BINDINGS), and we conclude by defining the
syntax of SELECT queries, which use the SELECT op-
erator (SELECT). More precisely, a SPARQL graph pat-
tern expression is defined recursively as follows:

(1) A tuple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is
a graph pattern (a triple pattern).

(2) If P1 and P2 are graph patterns, then expressions
(P1 AND P2), (P1 OPT P2), and (P1 UNION P2)
are graph patterns.

(3) If P is a graph pattern and R is a SPARQL built-in
condition, then the expression (P FILTER R) is a
graph pattern.

(4) If P is a graph pattern and a ∈ (I ∪ V), then
(GRAPH a P) is a graph pattern.

(5) If P is a graph pattern and a ∈ (I ∪ V), then
(SERVICE a P) is a graph pattern.

As we will see below, despite the similarity between the
syntaxes of GRAPH and SERVICE operators, they be-
have semantically quite differently.

For the exposition of this paper, we leave out fur-
ther more complex graph patterns from SPARQL 1.1 in-
cluding aggregates, property paths, and subselects, but
only mention one additional feature which is particu-
larly relevant for federated queries, namely, BINDINGS
queries. A SPARQL BINDINGS query is defined as fol-
lows:

(6) If P is a graph pattern, ~W ∈ Vn is a nonempty
sequence of pairwise distinct variables of length
n > 0 and { ~A1, . . . , ~Ak} is a nonempty set of
sequences ~Ai ∈ (I ∪ L ∪ {UNBOUND})n, then
(P BINDINGS ~W { ~A1, . . . , ~Ak}) is a BINDINGS
query.

Finally, a SPARQL SELECT query is defined as:

(7) If P is either a graph pattern or a BINDINGS query,
and W is a set of variables, then (SELECT W P) is
a SELECT query.

It is important to notice that the rules (1)–(4) above were
introduced in [8], while we formalize in the rules (5)–(7)
the federation extension of SPARQL proposed in [7].

We used the notion of built-in conditions for the
FILTER operator above. A SPARQL built-in condi-
tion is constructed using elements of the set (I ∪ L ∪ V)
and constants, logical connectives (¬, ∧, ∨), the binary
equality predicate (=) as well as unary predicates like
bound, isBlank, isIRI, and isLiteral.6 That is: (1) if
?X, ?Y ∈ V and c ∈ (I∪L), then bound(?X), isBlank(?X),
isIRI(?X), isLiteral(?X), ?X = c and ?X =?Y are built-in
conditions, and (2) if R1 and R2 are built-in conditions,
then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in condi-
tions.

Let P be either a graph pattern or a BINDINGS query
or a SELECT query. In what follows, we use var(P) to
denote the set of variables occurring in P. In particular,
if t is a triple pattern, then var(t) denotes the set of vari-
ables occurring in the components of t. Similarly, for a
built-in condition R, we use var(R) to denote the set of
variables occurring in R.

1.2. Semantics

To define the semantics of SPARQL queries, we need
to introduce some extra terminology from [8]. A map-
ping µ from V to (I∪B∪L) is a partial function µ : V →
(I ∪ B ∪ L). Abusing notation, for a triple pattern t, we
denote by µ(t) the pattern obtained by replacing the vari-
ables in t according to µ. The domain of µ, denoted by
dom(µ), is the subset of V where µ is defined. We some-
times write down concrete mappings in square brackets,
for instance, µ = [?X → a, ?Y → b] is the mapping with
dom(µ) = {?X, ?Y} such that, µ(?X) = a and µ(?Y) = b.
Two mappings µ1 and µ2 are compatible, denoted by

6For simplicity, we omit here other features such as comparison
operators (‘<’, ‘>’,‘≤’,‘≥’), data type conversion and string functions,
see [1, Section 11.3] for details. It should be noted that the results of
the paper can be easily extended to the other built-in predicates in
SPARQL
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µ1 ∼ µ2, when for all ?X ∈ dom(µ1) ∩ dom(µ2), it is the
case that µ1(?X) = µ2(?X), i.e. when µ1 ∪ µ2 is also a
mapping. Intuitively, µ1 and µ2 are compatible if µ1 can
be extended with µ2 to obtain a new mapping, and vice
versa [8]. We will use the symbol µ∅ to represent the
mapping with empty domain (which is compatible with
any other mapping).

Let Ω1 and Ω2 be sets of mappings.7 Then the join of,
the union of, the difference between and the left outer-
join between Ω1 and Ω2 are defined as follows [8]:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1,

µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 rΩ2 = {µ ∈ Ω1 | ∀µ
′ ∈ Ω2 : µ � µ′},

Ω1 Ω2 = (Ω1 on Ω2) ∪ (Ω1 rΩ2).

Next we use these operators to give semantics to graph
pattern expressions, BINDINGS queries and SELECT
queries. More specifically, we define this semantics in
terms of an evaluation function J · KDS

G , which takes as
input any of these types of queries and returns a set of
mappings, depending on the active dataset DS and the
active graph G within DS .

Here, we use the notion of a dataset from SPARQL,
i.e. a dataset DS = {(def ,G), (g1,G1), . . . (gk,Gk)}, with
k ≥ 0 is a set of pairs of symbols and graphs associ-
ated with those symbols, where the default graph G is
identified by the special symbol def < I and the re-
maining so-called “named” graphs (Gi) are identified
by IRIs (gi ∈ I). Without loss of generality (there
are other ways to define the dataset such as via ex-
plicit FROM and FROM NAMED clauses), we assume
that any query is evaluated over a fixed dataset DS and
that any SPARQL endpoint that is identified by an IRI
c ∈ I evaluates its queries against its own fixed dataset
DS c = {(def ,Gc), (gc,1,Gc,1), . . . (gc,kc ,Gc,kc )}. That is,
we assume given a partial function ep from the set I
of IRIs such that for every c ∈ I, if ep(c) is defined,
then ep(c) = DS c is the dataset associated with the
endpoint accessible via IRI c. Moreover, we assume
(i) a function graph(g,DS ) which – given a dataset
DS = {(def ,G), (g1,G1), . . . (gk,Gk)} and a graph name
g ∈ {def , g1, . . . gk} – returns the graph corresponding
to symbol g within DS , and (ii) a function names(DS )
which given a dataset DS as before returns the set of
names {g1, . . . gk}.

7As in [8], for the exposition in this paper, we consider a set-based
semantics, whereas the semantics of [1] considers duplicate solutions,
i.e., multisets of mappings.

The evaluation of a graph pattern P over a dataset DS
with active graph G, denoted by JPKDS

G , is defined recur-
sively as shown in Figure 1. In this figure, the definition
of the semantics of the FILTER operator is based on the
definition of the notion of satisfaction of a built-in con-
dition by a mapping. More precisely, given a mapping
µ and a built-in condition R, we say that µ satisfies R,
denoted by µ |= R, if: 8

- R is bound(?X) and ?X ∈ dom(µ);

- R is isBlank(?X), ?X ∈ dom(µ) and µ(?X) ∈ B;

- R is isIRI(?X), ?X ∈ dom(µ) and µ(?X) ∈ I;

- R is isLiteral(?X), ?X ∈ dom(µ) and µ(?X) ∈ L;

- R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;

- R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and
µ(?X) = µ(?Y);

- R is (¬R1), and it is not the case that µ |= R1;

- R is (R1 ∨ R2), and µ |= R1 or µ |= R2;

- R is (R1 ∧ R2), µ |= R1 and µ |= R2.

Moreover, the semantics of BINDINGS queries is de-
fined as follows. Given a sequence ~W = [?X1, . . . , ?Xn]
of pairwise distinct variables, where n ≥ 1, and a
sequence ~A = [a1, . . . , an] of values from (I ∪ L ∪
{UNBOUND}), let µ ~W 7→ ~A be a mapping with domain
{?Xi | i ∈ {1, . . . , n} and ai ∈ (I ∪ L)} and such that
µ ~W 7→ ~A(?Xi) = ai for every ?Xi ∈ dom(µ ~W 7→ ~A). Then

(8) If P = (P1 BINDINGS ~W { ~A1, . . . , ~Ak}) is a
BINDINGS query:

JPKDS
G = JP1KDS

G on {µ ~W 7→ ~A1
, . . . , µ ~W 7→ ~Ak

}.

Finally, the semantics of SELECT queries is defined as
follows. Given a mapping µ : V → (I ∪ B∪ L) and a set
of variables W ⊆ V , the restriction of µ to W, denoted
by µ|W , is a mapping such that dom(µ|W ) = (dom(µ)∩W)
and µ|W (?X) = µ(?X) for every ?X ∈ (dom(µ)∩W). Then

(9) If P = (SELECT W P1) is a SELECT query, then:

JPKDS
G = {µ|W | µ ∈ JP1KDS

G }.

8For the sake of presentation, we use here the two-valued seman-
tics for built-in conditions from [8], instead of the three-valued seman-
tics including errors used in [1]. It should be noticed that the results
of the paper can be easily extended to this three-valued semantics.
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(1) If P is a triple pattern t, then JPKDS
G = {µ | dom(µ) = var(t) and µ(t) ∈ G}.

(2) If P is (P1 AND P2), then JPKDS
G = JP1KDS

G on JP2KDS
G .

(3) If P is (P1 OPT P2), then JPKDS
G = JP1KDS

G JP2KDS
G .

(4) If P is (P1 UNION P2), then JPKDS
G = JP1KDS

G ∪ JP2KDS
G .

(5) If P is (GRAPH c P1) with c ∈ I ∪ V , then

JPKDS
G =


JP1KDS

graph(c,DS ) if c ∈ names(DS )
{µ∅} if c ∈ I \ names(DS ){
µ ∪ µc | ∃g ∈ names(DS ) : µc = [c→ g], µ ∈ JP1KDS

graph(g,DS ) and µc ∼ µ
}

if c ∈ V

(6) If P is (SERVICE c P1) with c ∈ I ∪ V , then

JPKDS
G =


JP1K

ep(c)
graph(def ,ep(c)) if c ∈ dom(ep)

{µ∅} if c ∈ I \ dom(ep){
µ ∪ µc | ∃s ∈ dom(ep) : µc = [c→ s], µ ∈ JP1K

ep(s)
graph(def ,ep(s)) and µc ∼ µ

}
if c ∈ V

(7) If P is (P1 FILTER R), then JPKDS
G = {µ ∈ JP1KDS

G | µ |= R}.

Figure 1: Definition of JPKDS
G for a graph pattern P.

It is important to notice that the rules (1)–(5) and (7)
in Figure 1 and the previous rule (9) were introduced
in [8], while we propose in the rules (6) and (8) a se-
mantics for the operators SERVICE and BINDINGS
introduced in [7]. Intuitively, if c ∈ I is the IRI of
a SPARQL endpoint, then the idea behind the defini-
tion of (SERVICE c P1) is to evaluate query P1 in the
SPARQL endpoint specified by c. On the other hand,
if c ∈ I is not the IRI of a SPARQL endpoint, then
(SERVICE c P1) leaves all the variables in P1 unbound,
as this query cannot be evaluated in this case. This
idea is formalized by making µ∅ the only mapping in
the evaluation of (SERVICE c P1) if c < dom(ep). In
the same way, (SERVICE ?X P1) is defined by consid-
ering that variable ?X is used to store IRIs of SPARQL
endpoints. That is, (SERVICE ?X P1) is defined by as-
signing to ?X all the values s in the domain of func-
tion ep (in this way, ?X is also used to store the IRIs
from where the values of the variables in P1 are com-
ing from). Finally, the idea behind the definition of
(P1 BINDINGS ~W { ~A1, . . . , ~Ak}) is to constrain the val-
ues of the variables in ~W to the values specified in ~A1,
. . ., ~Ak.

The goal of the rules (6) and (8) is to define in
an unambiguous way what the result of evaluating
an expression containing the operators SERVICE and
BINDINGS should be. As such, these rules should not
be considered as a straightforward basis for an imple-
mentation of the language. In fact, a direct implemen-
tation of the rule (6), that defines the semantics of a

pattern of the form (SERVICE ?X P1), would involve
evaluating a particular query in every possible SPARQL
endpoint, which is obviously infeasible in practice. In
the next section, we face this issue and, in particular, we
introduce a syntactic condition on SPARQL queries that
ensures that a pattern of the form (SERVICE ?X P1) can
be evaluated by only considering a finite set of SPARQL
endpoints, whose IRIs are actually taken from the RDF
graph where the query is being evaluated.

2. On Evaluating the SERVICE Operator

As we pointed out in the previous section, the eval-
uation of a pattern of the form (SERVICE ?X P) is in-
feasible unless the variable ?X is bound to a finite set of
IRIs. This notion of boundedness is one of the most sig-
nificant and unclear concepts in the SPARQL federation
extension. In fact, since agreement on such a bounded-
ness notion could not yet be found, the current version
of the specification of this extension [7] does not specify
a formalization of the semantics of queries of the form
(SERVICE ?X P). Here, we provide a formalization of
this concept, and we study the complexity issues asso-
ciated with it.

2.1. The notion of boundedness

Assume that G is an RDF graph that uses triples of the
form (a, service address, b) to indicate that a SPARQL
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endpoint with name a is located at the IRI b. Moreover,
let P be the following SPARQL query:(

SELECT {?X, ?N, ?E}(
(?X, service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))
))
.

Query P is used to compute the list of names and
email addresses that can be retrieved from the SPARQL
endpoints stored in an RDF graph. In fact, if µ ∈
JPKDS

G , then µ(?X) is the name of a SPARQL end-
point stored in G, µ(?N) is the name of a person
stored in that SPARQL endpoint and µ(?E) is the
email address of that person. It is important to no-
tice that there is a simple strategy that ensures that
query P can be evaluated in practice: first compute
J(?X, service address, ?Y)KDS

G , and then for every µ in
this set, compute J(SERVICE a (?N, email, ?E))KDS

G
with a = µ(?Y). More generally, SPARQL pattern
(SERVICE ?Y (?N, email, ?E)) can be evaluated over
DS in this case as only a finite set of values from the
domain of G need to be considered as the possible val-
ues of ?Y . This idea naturally gives rise to the following
notion of boundedness for the variables of a SPARQL
query. In the definition of this notion, dom(G) refers
to the domain of a graph G, that is, the set of elements
from (I∪B∪L) that are mentioned in G; dom(DS ) refers
to the union of the domains of all graphs in the dataset
DS ; and finally, dom(P) refers to the set of elements
from (I ∪ L) that are mentioned in P.

Definition 1 (Boundedness). Let P be a SPARQL
query and ?X ∈ var(P). Then ?X is bound in P if one of
the following conditions holds:

• P is either a graph pattern or a BINDINGS query,
and for every dataset DS , every RDF graph G
in DS and every µ ∈ JPKDS

G : ?X ∈ dom(µ) and
µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P)).

• P is a SELECT query (SELECT W P1) and ?X is
bound in P1.

In the evaluation of a graph pattern (GRAPH ?X P)
over a dataset DS , variable ?X necessarily takes a value
from names(DS ). Thus, the GRAPH operator makes
such a variable ?X to be bound. Given that the val-
ues in names(DS ) are not necessarily mentioned in the
dataset DS , the previous definition first imposes the
condition that ?X ∈ dom(µ), and then not only con-
siders the case µ(?X) ∈ dom(DS ) but also the case

µ(?X) ∈ names(DS ). In the same way, the BINDINGS
operator can make a variable ?X in a query P to be
bound by assigning to it a fixed set of values. Given that
these values are not necessarily mentioned in the dataset
DS where P is being evaluated, the previous definition
also considers the case µ(?X) ∈ dom(P). As an exam-
ple of the above definition, we note that variable ?Y is
bound in the graph pattern

P1 = ((?X, service address, ?Y) AND
(SERVICE ?Y (?N, email, ?E))),

as for every dataset DS , every RDF graph G in DS and
every mapping µ ∈ JP1KDS

G , we know that ?Y ∈ dom(µ)
and µ(?Y) ∈ dom(DS ). Moreover, we also have that
variable ?Y is bound in (SELECT {?X, ?N, ?E} P1) as
?Y is bound in graph pattern P1.

A natural way to ensure that a SPARQL query P can
be evaluated in practice is by imposing the restriction
that for every sub-pattern (SERVICE ?X P1) of P, it
holds that ?X is bound in P. However, in the following
theorem we show that such a condition is undecidable
and, thus, a SPARQL query engine would not be able to
check it in order to ensure that a query can be evaluated.

Theorem 1. The problem of verifying, given a SPARQL
query P and a variable ?X ∈ var(P), whether ?X is
bound in P is undecidable.

Proof: The satisfiability problem for relational algebra
is the problem of verifying, giving a relational expres-
sion ϕ, whether there exists a (finite) database instance
I such that the set of answers of ϕ over I is not empty.
Given that this problem is undecidable [16], it is pos-
sible to prove from the results in [17] the following re-
sult about the complexity of the satisfiability problem
for SPARQL. A graph pattern P is said to be satisfiable
if there exists a dataset DS and RDF graph G in DS
such that JPKDS

G , ∅.

Claim 1. The problem of verifying, given a graph pat-
tern P, whether P is satisfiable is undecidable.

Next we show that the complement of the previous prob-
lem can be reduced to the problem of verifying, given a
graph pattern P and a variable ?X ∈ var(P), whether ?X
is bound in P, from which we conclude that the theorem
holds. Let P be a graph pattern and ?X, ?Y , ?Z be vari-
ables that are not mentioned in P. Then define a graph
pattern Q as:

Q = ((?X, ?Y, ?Z) UNION P).

It is easy to see that variable ?X is bound in Q if and
only if graph pattern P is not satisfiable, which was to
be shown. �
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The fact that the notion of boundedness is undecid-
able prevents one from using it as a restriction over the
variables in SPARQL queries. To overcome this limi-
tation, we introduce here a syntactic condition that en-
sures that a variable is bound in a pattern and that can
be efficiently verified.

Definition 2 (Strong boundedness). Let P be a
SPARQL query. Then the set of strongly bound vari-
ables in P, denoted by SB(P), is recursively defined as
follows:

• if P = t, where t is a triple pattern, then SB(P) =

var(t);

• if P = (P1 AND P2), then SB(P) = SB(P1) ∪
SB(P2);

• if P = (P1 UNION P2), then SB(P) = SB(P1) ∩
SB(P2);

• if P = (P1 OPT P2), then SB(P) = SB(P1);

• if P = (P1 FILTER R), then SB(P) = SB(P1);

• if P = (GRAPH c P1), with c ∈ I ∪ V , then

SB(P) =

∅ c ∈ I,
SB(P1) ∪ {c} c ∈ V;

• if P = (SERVICE c P1), with c ∈ I ∪ V , then
SB(P) = ∅;

• if P = (P1 BINDINGS ~W { ~A1, . . . , ~An}), then

SB(P) = SB(P1) ∪

{?X | ?X is included in ~W and for

every i ∈ {1, . . . , n} : ?X ∈ dom(µ ~W 7→ ~Ai
)};

• if P = (SELECT W P1), then SB(P) = (W ∩
SB(P1)).

The previous definition recursively collects from a
SPARQL query P a set of variables that are guaran-
teed to be bound in P. For example, if P is a triple
pattern t, then SB(P) = var(t) as one knows that for ev-
ery variable ?X ∈ var(t), every dataset DS and every
RDF graph G in DS , if µ ∈ JtKDS

G , then ?X ∈ dom(µ)
and µ(?X) ∈ dom(G) (which is a subset of dom(DS )).
In the same way, if P = (P1 AND P2), then SB(P) =

SB(P1) ∪ SB(P2) as one knows that if ?X is bound in
P1 or in P2, then ?X is bound in P. As a final exam-
ple, notice that if P = (P1 BINDINGS ~W { ~A1, . . . , ~An})
and ?X is a variable mentioned in ~W such that ?X ∈

dom(µ ~W 7→ ~Ai
) for every i ∈ {1, . . . , n}, then ?X ∈ SB(P).

In this case, one knows that ?X is bound in P since
JPKDS

G = JP1KDS
G on {µ ~W 7→ ~A1

, . . . , µ ~W 7→ ~An
} and ?X is in

the domain of each one of the mappings µ ~W 7→ ~Ai
, which

implies that µ(?X) ∈ dom(P) for every µ ∈ JPKDS
G . In

the following proposition, we formally show that our
intuition about SB(P) is correct, in the sense that ev-
ery variable in this set is bound in P (the proof of this
proposition can be found in Appendix AppendixA).

Proposition 1. For every SPARQL query P and vari-
able ?X ∈ var(P), if ?X ∈ SB(P), then ?X is bound in
P.

Given a SPARQL query P and a variable ?X ∈ var(P), it
can be efficiently verified whether ?X is strongly bound
in P. Thus, a natural and efficiently verifiable way to
ensure that a SPARQL query P can be evaluated in
practice is by imposing the restriction that for every
sub-pattern (SERVICE ?X P1) of P, it holds that ?X is
strongly bound in P. However, this notion still needs to
be modified in order to be useful in practice, as shown
by the following examples.

Example 1. Assume first that P1 is the following graph
pattern:

P1 =

[
(?X, service description, ?Z) UNION(

(?X, service address, ?Y) AND

(SERVICE ?Y (?N, email, ?E))
)]
.

That is, either ?X and ?Z store the name of a SPARQL
endpoint and a description of its functionalities, or ?X
and ?Y store the name of a SPARQL endpoint and the
IRI where it is located (together with a list of names and
email addresses retrieved from that location). Variable
?Y is neither bound nor strongly bound in P1. How-
ever, there is a simple strategy that ensures that P1 can
be evaluated over a dataset DS and an RDF graph G
in DS : first compute J(?X, service description, ?Z)KDS

G ,
then compute J(?X, service address, ?Y)KDS

G , and finally
for every µ in the set J(?X, service address, ?Y)KDS

G ,
compute J(SERVICE a (?N, email, ?E))KDS

G with a =

µ(?Y). In fact, the reason why P1 can be evaluated
in this case is that ?Y is bound (and strongly bound)
in the sub-pattern ((?X, service address, ?Y) AND
(SERVICE ?Y (?N, email, ?E))) of P1.

As a second example, assume that DS is a dataset
and G is an RDF graph in DS that uses triples of the
form (a1, related with, a2) to indicate that the SPARQL
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endpoints located at the IRIs a1 and a2 store related
data. Moreover, assume that P2 is the following graph
pattern:

P2 =

[
(?U1, related with, ?U2) AND(

SERVICE ?U1

(
(?N, email, ?E) OPT

(SERVICE ?U2 (?N, phone, ?F))
))]
.

When this query is evaluated over the dataset DS and
the RDF graph G in DS , it returns for every tuple
(a1, related with, a2) in G, the list of names and email
addresses that can be retrieved from the SPARQL end-
point located at a1, together with the phone number for
each person in this list for which this data can be re-
trieved from the SPARQL endpoint located at a2 (re-
call that graph pattern (SERVICE ?U2 (?N, phone, ?F))
is nested inside the first SERVICE operator in P2).
To evaluate this query over an RDF graph, first
it is necessary to determine the possible values
for variable ?U1, and then to submit the query
((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F)))
to each one of the endpoints located at the IRIs
stored in ?U1. In this case, variable ?U2 is
bound (and also strongly bound) in P2. How-
ever, this variable is not bound in the graph pattern
((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))),
which has to be evaluated in some of the SPARQL end-
points stored in the RDF graph where P2 is being eval-
uated, something that is infeasible in practice. It is im-
portant to notice that the difficulties in evaluating P2 are
caused by the nesting of SERVICE operators (more pre-
cisely, by the fact that P2 has a sub-pattern of the form
(SERVICE ?X1 Q1), where Q1 has in turn a sub-pattern
of the form (SERVICE ?X2 Q2) such that ?X2 is bound
in P2 but not in Q1). �

In the following section, we use the concept of strongly
boundedness to define a notion that ensures that a
SPARQL query containing the SERVICE operator can
be evaluated in practice, and which takes into consider-
ation the ideas presented in the above examples.

2.2. The notion of service-safeness: Considering sub-
patterns and nested SERVICE operators

The goal of this section is to provide a condition that
ensures that a SPARQL query containing the SERVICE
operator can be safely evaluated in practice. To this end,
we first need to introduce some terminology. Given a
SPARQL query P, define T (P) as the parse tree of P.
In this tree, every node corresponds to a sub-pattern of

P. An example of a parse tree of a pattern Q is shown
in Figure 2. In this figure, u1, u2, u3, u4, u5, u6 are the
identifiers of the nodes of the tree, which are labeled
with the sub-patterns of Q. It is important to notice that
in this tree we do not make any distinction between the
different operators in SPARQL, we just use the child
relation to store the structure of the sub-patterns of a
SPARQL query.

Tree T (P) is used to define the notion of service-
boundedness, which extends the concept of bounded-
ness, introduced in the previous section, to consider
variables that are bound inside sub-patterns and nested
SERVICE operators. It should be noticed that these two
features were identified in the previous section as impor-
tant for the definition of a notion of boundedness (see
Example 1).

Definition 3 (Service-boundedness). A SPARQL
query P is service-bound if for every node u of T (P)
with label (SERVICE ?X P1), it holds that:

(1) there exists a node v of T (P) with label P2 such
that v is an ancestor of u in T (P) and ?X is bound
in P2;

(2) P1 is service-bound.

For example, query Q in Figure 2 is service-bound.
In fact, condition (1) of Definition 3 is satisfied as u5
is the only node in T (Q) having as label a SERVICE
graph pattern, in this case (SERVICE ?X (?Y, a, ?Z)),
and for the node u3, it holds that: u3 is an ancestor
of u5 in T (P), the label of u3 is P = ((?X, b, c) AND
(SERVICE ?X (?Y, a, ?Z))) and ?X is bound in P. More-
over, condition (2) of Definition 3 is satisfied as the
sub-pattern (?Y, a, ?Z) of the label of u5 is also service-
bound.

The notion of service-boundedness captures our in-
tuition about the condition that a SPARQL query con-
taining the SERVICE operator should satisfy. Unfortu-
nately, the following theorem shows that such a condi-
tion is undecidable and, thus, a SPARQL query engine
would not be able to check it in order to ensure that a
query can be evaluated.

Theorem 2. The problem of verifying, given a SPARQL
query P, whether P is service-bound is undecidable.

Proof: As in the proof of Theorem 1, we use the un-
decidability of the satisfiability problem for SPARQL
to show that the theorem holds. Let P be a SPARQL
graph pattern and ?X, ?Y , ?Z, ?U, ?V , ?W be variables
that are not mentioned in P, and assume that P does not
mention the operator SERVICE (recall that the satisfia-
bility problem is already undecidable for the fragment
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u6 : (?Y, a, ?Z)

u1 : ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

u2 : (?Y, a, ?Z) u3 : ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))

u4 : (?X, b, c) u5 : (SERVICE ?X (?Y, a, ?Z))

Figure 2: Parse tree T (Q) for the graph pattern Q = ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))).

of SPARQL consisting of the operators AND, UNION,
OPT and FILTER). Then define a SPARQL query Q as:

Q =

((
(?X, ?Y, ?Z) UNION P

)
AND(

SERVICE ?X (?U, ?V, ?W)
))
.

Next we show that Q is service-bound if and only if P
is not satisfiable.

(⇐) If P is not satisfiable, then Q is equivalent to the
pattern:

Q′ = ((?X, ?Y, ?Z) AND
(SERVICE ?X (?U, ?V, ?W))),

which is service-bound since variable ?X is bound
in Q′.

(⇒) Assume that P is satisfiable. Then given that
variable ?X is not mentioned in P, we have
that ?X is not bound in the graph pattern
((?X, ?Y, ?Z) UNION P). Thus, given that ?X is nei-
ther bound in (SERVICE ?X (?U, ?V, ?W)), we de-
duce that query Q is not service-bound since ?X is
not a bound variable in Q.

Therefore, we have shown that the complement of the
satisfiability problem for SPARQL can be reduced to
the problem of verifying, given a SPARQL query P,
whether P is service-bound. From this we conclude that
the theorem holds. �

As for the case of the notion of boundedness, the fact
that the notion of service-boundedness is undecidable
prevents one from using it as a restriction over the vari-
ables used in SERVICE calls. To overcome this limi-
tation, in the definition of service-boundedness, we re-
place the restriction that the variables used in SERVICE
calls are bound by the decidable restriction that they are

strongly bound. In this way, we obtain a syntactic con-
dition over SPARQL patterns that ensures that they are
service-bound, and which can be efficiently verified.

Definition 4 (Service-safeness). A SPARQL query P is
service-safe if for every node u of T (P) with label
(SERVICE ?X P1), it holds that:

(1) there exists a node v of T (P) with label P2 such
that v is an ancestor of u inT (P) and ?X ∈ SB(P2);

(2) P1 is service-safe.

As a corollary of Proposition 1, we obtain the following
proposition.

Proposition 2. If a SPARQL query P is service-safe,
then P is service-bound.

Prior to starting with the most technological part of this
article, we describe to the reader an algorithm for SER-
VICE safeness checking. Our system uses a bottom-
up algorithm over the parse tree T (Q) of a SPARQL
query Q for validating the service-safeness condition.
This procedure traverses the parse tree T (Q) twice for
ensuring that Q can be correctly evaluated. In the first
traversal, for each node identifier u of T (Q), the algo-
rithm computes the set of strongly bound variables for
the label P of u. For example, in the parse tree shown
in Figure 2, the variable ?X is identified as the only
strongly bound variable for the label of the node with
identifier u3. In the second traversal, the bottom-up al-
gorithm uses these sets of strongly bound variables to
check two conditions for every node identifier u ofT (Q)
with label of the form (SERVICE ?X P): whether there
exists a node v ofT (Q) with label P′ such that v is an an-
cestor of u in T (Q) and ?X is strongly bound in P′, and
whether P is itself service-safe. If these two conditions
are fulfilled, then the algorithm returns true to indicate
that Q is service-safe. Otherwise, the procedure returns
false.
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3. Optimizing the Evaluation of the OPTIONAL
Operator in SPARQL Federated Queries

If a SPARQL query Q including the SERVICE op-
erator has to be evaluated in a SPARQL endpoint A,
then some of the sub-queries of Q may have to be eval-
uated in some external SPARQL endpoints. Thus, the
problem of optimizing the evaluation of Q in A, and,
in particular, the problem of reordering Q in A to op-
timize this evaluation, becomes particularly relevant in
this scenario, as in some cases one cannot rely on the
optimizers of the external SPARQL endpoints. Moti-
vated by this, we present in this section some optimiza-
tion techniques that extend the techniques presented in
[8] to the case of SPARQL queries using the SERVICE
operator, and which can be applied to a considerable
number of SPARQL federated queries.

3.1. Optimization via well-designed patterns

In [8, 9], the authors study the complexity of evaluat-
ing a pattern in the fragment of SPARQL consisting of
the operators AND, UNION, OPT and FILTER. One of
the conclusions of these papers is that the main source
of complexity in SPARQL comes from the use of the
OPT operator. In fact, it is proved in [8] that the com-
plexity of the problem of verifying, given a mapping µ,
a SPARQL pattern P, a dataset DS and an RDF graph G
in DS , whether µ ∈ JPKDS

G is PSPACE-complete, and it
is proved in [9] that this bound remains the same if only
the OPT operator is allowed in SPARQL patterns. In
light of these results, in [8] a fragment was introduced
of SPARQL that forbids a special form of interaction
between variables appearing in optional parts, which
rarely occurs in practice. The patterns in this fragment,
which are called well-designed patterns [8], can be eval-
uated more efficiently and are suitable for reordering
and optimization. In this section, we extend the defi-
nition of the notion of being well-designed to the case
of SPARQL patterns using the SERVICE operator, and
prove that the reordering rules proposed in [8], for op-
timizing the evaluation of well-designed patterns, also
hold in this extension. The use of these rules allows to
reduce the number of tuples being transferred and joined
in federated queries, and hence our implementation ben-
efits from this as shown in Section 4.

Let P be a graph pattern constructed by using the
operators AND, OPT, FILTER and SERVICE, and as-
sume that P satisfies the safety condition that for every
sub-pattern (P1 FILTER R) of P, it holds that var(R) ⊆
var(P1). Then, by following the terminology introduced
in [8], we say that P is well-designed if for every sub-
pattern P′ = (P1 OPT P2) of P and for every variable

?X occurring in P: If ?X occurs both inside P2 and out-
side P′, then it also occurs in P1. All the graph patterns
given in the previous sections are well-designed. On the
other hand, the following pattern is not well-designed:

P =

(
(?X, nickname, ?Y) AND

(SERVICE c

((?X, email, ?U) OPT (?Y, email, ?V)))
)

as for the sub-pattern P′ = (P1 OPT P2) of P with
P1 = (?X, email, ?U) and P2 = (?Y, email, ?V)), we
have that ?Y occurs in P2 and outside P′ in the triple
pattern (?X, nickname, ?Y), but it does not occur in
P1. Given an RDF graph G, graph pattern P retrieves
from G a list of people with their nicknames, and re-
trieves from the SPARQL endpoint located at the IRI
c the email addresses of these people and, option-
ally, the email addresses associated to their nicknames.
What is unnatural about this graph pattern is the fact
that (?Y, email, ?V) is giving optional information for
(?X, nickname, ?Y), but in P appears as giving optional
information for (?X, name, ?U). In fact, it could hap-
pen that some of the results retrieved by using the triple
pattern (?X, nickname, ?Y) are not included in the final
answer of P, as the value of variable ?Y in these in-
termediate results could be incompatible with the val-
ues for this variable retrieved by using the triple pattern
(?Y, email, ?V). To overcome this limitation, one should
use instead the following well-designed SPARQL graph
pattern:[(

(?X, nickname, ?Y) AND

(SERVICE c (?X, email, ?U))
)

OPT

(SERVICE c (?Y, email, ?V))
]

In the following proposition, we show that well-
designed patterns including the SERVICE operator are
suitable for reordering and, thus, for optimization.

Proposition 3. Let P be a well-designed pattern and P′

a pattern obtained from P by using one of the following
reordering rules:

((P1 OPT P2) FILTER R) −→
((P1 FILTER R) OPT P2),

(P1 AND (P2 OPT P3)) −→
((P1 AND P2) OPT P3),

((P1 OPT P2) AND P3) −→
((P1 AND P3) OPT P2).
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Then P′ is a well-designed pattern equivalent to P.

The proof of this proposition is a simple extension of
the proof of Proposition 4.10 in [8].

In our federated SPARQL query engine (SPARQL-
DQP), we have implemented the rewriting rules shown
in Proposition 3 with a bottom up algorithm for check-
ing the condition of being well-designed. In the fol-
lowing section, we describe the details of the imple-
mentation of these algorithms and the architecture of
SPARQL-DQP.

4. Implementation of SPARQL-DQP and Well-
Designed Patterns Optimization

In this section, we describe the implementation de-
tails of the SPARQL-DQP system and, in particular,
we describe how we implemented the optimization
techniques for well-designed SPARQL graph patterns
(which are presented in Section 3).

We base our implementation on the use of Web
Service-based access to data sources. WS-based access
is a widely used technology in the data intensive scien-
tific workflow community, and several systems for ac-
cessing large amounts of data already use this approach
in their implementation. Some of these data workflow
systems are presented in [18, 12, 19]. These systems
have been successfully used in a variety of data inten-
sive scenarios like analyzing data from the Southern
California Earthquake Center [20], data from biologi-
cal domains like post genomic research [21], analysis
of proteins and peptides from tandem mass spectrome-
try data [22], cancer research [23], meteorological phe-
nomena [24] or used in the German grid platform [25].
In these scenarios, the systems accessed and processed
petabytes of data, and we are convinced that the ap-
proach they use is the most suitable for managing the
large amounts of data present in the LOD cloud.

We will provide some background on WS-based ac-
cess to data sources, before describing in more detail
our implementation. But first we will briefly introduce
the reader to the state of the art of distributed query sys-
tems.

4.1. Introduction to Data Integration and Query Feder-
ation

There are several approaches for integrating hetero-
geneous data sources. In [26], the author provides an
initial classification of different architectures for this
purpose. One of the architectures is a mediator-wrapper
architecture [27] which provides an integrated view of
the data that resides in multiple databases. A schema for

the integrated view is available from the mediator, and
queries can be made against that schema. This schema
can be generated in two different ways, using a Global
as View (GAV) [28] or a Local as View (LAV) [29]
approach. One example of a mediator system based
on the GAV approach is Garlic [30]. Besides of Gar-
lic, other mediator systems that pioneered the work on
distributed query processing and data integration were
the TSIMISS project [31] and the Information Manifold
[32], among others.

Another type of architecture for accessing distributed
data are query federation systems. Federated architec-
tures provide a framework in which several databases
can join in a federation. As members of the federa-
tion, each database extends its schema to incorporate
subsets of the data held in the other member databases.
In most cases, a virtualized approach is supported for
this approach [33]. In [34], a general architecture9 is
presented with the following components: query parser,
query rewriter, query optimizer, plan refinement com-
ponent and query execution engine.

We base our approach on extending a query federa-
tion system (OGSA-DQP [13]) built on top of a data
workflow system (OGSA-DAI [12]) targeted at deal-
ing with large amounts of data in e-Science applications
[35, 36], as we mentioned before. In the next subsec-
tion we describe the architecture of the extended system
and the specific characteristics for dealing with large
amounts of data: data streaming and process paralleliza-
tion.

4.2. OGSA-DAI and OGSA-DQP

OGSA-DAI10 is a framework that allows access,
transformation, integration and delivery of distributed
data resources. The data resources supported by
OGSA-DAI are relational databases, XML databases
and file systems. These features are collectively en-
abled through the use of data workflows which are ex-
ecuted within the OGSA-DAI framework. The compo-
nents of the data workflows are activities: well-defined
functional units (data goes in, the data is operated on,
data comes out), and can be viewed as equivalent to pro-
gramming language methods. One key characteristic of
the architecture is that data is streamed between activi-
ties so these data can be consumed by the next activity
on the workflow as soon as it is outputted. The other
key feature of the workflow execution engine is that all

9In fact, this architecture is generic to all kind of query processing
systems, not only distributed query processors

10http://www.ogsadai.org.uk/
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activities within a data workflow are executed in paral-
lel: data streams go through activities in a pipeline-like
way (as soon as a data unit is processed by an activity
this data unit is buffered or sent to the next activity in
the pipeline), and each activity operates on a different
portion of a data stream at the same time.

The distributed query processor (DQP) [13] is a set of
activities within the OGSA-DAI framework that execute
SQL queries on a set of distributed relational databases
managed by OGSA-DAI. OGSA-DQP receives as in-
put an SQL query addressed to a set of distributed
databases. It parses the query identifying to which of
the databases in the federation these queries are ad-
dressed, and creates a data workflow using the OGSA-
DAI activities. This data workflow is executed within
the OGSA-DAI workflow execution engine and results
are sent back to the client.

The deployment of OGSA-DAI/DQP can be done
in several Web application servers, depending on how
much we want to distribute the processing and how
many remote datasets we want to access. The standard
configuration is of an OGSA-DAI instance running in a
Web server for each data source we want to access, but
other configurations are available. For instance, it could
be possible to configure OGSA-DAI with a single server
which would be in charge of accessing all datasets in
the federation. Figure 3 shows a possible deployment
configuration of OGSA-DAI. In that Figure, there is a
main node (HQResource) which is in charge of coor-
dinating the federation of data sources. At startup, this
node gathers information about the existing data sources
that are wrapped at the remote OGSA-DAI. In the Fig-
ure there are two other OGSA-DAI nodes which expose
the remote data. In this example we expose an RDF
database and two SPARQL endpoints. SPARQL end-
points are managed in a slightly different manner than
the other data resources (SQL and RDF databases): they
can be loaded dynamically in the remote data nodes
without previously configuring them. The processing
of a distributed SPARQL query is presented in the next
section.

4.3. SPARQL-DQP implementation
From a high level point of view, SPARQL-DQP can

be defined as an extension of OGSA-DQP that consid-
ers an additional query language: SPARQL. The de-
sign of SPARQL-DQP follows the idea of adding a new
type of data source (RDF data sources) to the standard
data sources managed by OGSA-DAI, and extending
the parsers, planners, operators and optimizers that are
handled by OGSA-DQP in order to handle the SPARQL
query language.

We extend OGSA-DQP to accept, optimize and dis-
tribute SPARQL queries across different data nodes.
SPARQL-DQP reads the SPARQL query, it creates a ba-
sic logical query plan (LQP), optimizes it, next it selects
in which nodes is going to be executed that query plan,
and finally it executes the query plan using the workflow
engine. For that, a new coordinator of the distributed
query processor is needed (HQResource in Figure 3).
This coordinator extends the original OGSA-DQP co-
ordinator in such a way that accepts SPARQL queries.
Also, other components are extended or developed like
the new OGSA-DQP’s data dictionary that contains
information about the federation nodes, the SPARQL
query parser and the SPARQL LQP builder plus its op-
timizer. At initialization time the SPARQL-DQP re-
source checks the availability of the data nodes in which
the federation will be executed, and obtains their char-
acteristics which are stored in a data dictionary. These
characteristics are information about ad-hoc functions
implemented by the remote RDF resource, data node in-
formation (like security information, connection infor-
mation and data node address) and table metadata (cur-
rently only the RDF repository name, to be extended
with statistics about the data in the datasets). This infor-
mation is used to build the SPARQL LQP and to config-
ure the federation.

The SPARQL LQP Builder takes the abstract syn-
tax tree generated by the SPARQL parser and produces
a logical query plan. The logical query plan follows
the semantics defined by the SPARQL-WG11 in the
SPARQL 1.1 Federated Query extension specification
[7], which is also formalized in Section 1.2. The query
plan produced represents the SPARQL query using a
mix of operators and activities coming from the exist-
ing ones in OGSA-DQP and the newly added SPARQL
operators (like the SPARQL union, filters, the specific
SPARQL optimizations, scans, etc.).

Next, the OGSA-DQP chain of optimizers is applied,
and we add rewriting rules based on well-designed pat-
tern based optimizations. Besides, safeness rules have
to be checked as we described in Section 3.1, since some
SQL optimizers can only be applied to safe SPARQL
patterns.

In the final stage of the query processing, the gener-
ated remote requests and local sub-workflows are exe-
cuted and the results collected, and returned by the ac-
tivity.

11http://www.w3.org/2009/sparql/wiki/
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Figure 3: Deployment of OGSA-DAI

4.4. Other federated SPARQL querying processing sys-
tems

In this section, we briefly describe similar systems
that provide some support for SPARQL query feder-
ation. Some of the existing engines supporting the
SPARQL 1.1 Federated Query extension are ARQ12,
RDF-Query13, Rasqal RDF query Library14 and ANAP-
SID [10] among others. There are also other systems
which implement a distributed query processing system
for SPARQL like DARQ [4], Networked Graphs [5],
SPLENDID [37], FedX 1.1 [6], the system by Ladwig
et al. [38] and SemWIQ [39], but they do not follow the
official SPARQL 1.1 Federation specification. Another
system that supports distributed RDF querying is pre-
sented in [40]. However, we do not consider it here as it
uses the query language SeRQL instead of SPARQL.

We will now describe briefly each of these sys-
tems. ANAPSID implements two adaptive operators:
the agjoin and the adjoin operators. The agjoin operator
uses a hash join along with storing join tuples for speed-
ing up join operators. The adjoin operator, hides delays
coming from the data sources and perform dereferences
for certain predicates.

The system by Ladwig et al. [38] implements a join
operator called Symmetric Index Hash Join (SIHJoin),
which combines queries to remote SPARQL endpoints
with queries to local RDF data stores. When this situa-
tion happens, data retrieved from the local RDF dataset
is stored in an index hash structure for faster access
when performing a join with remote data. The authors

12http://jena.sourceforge.net/ARQ/
13http://search.cpan.org/dist/RDF-Query/
14http://librdf.org/rasqal

also provide cost models and the use of non-blocking
operators for joining data.

FedX also extends Sesame15 and bases its optimiza-
tions in grouping joins that are directed to the same
SPARQL endpoints and rule join optimizer using a
heuristics-based cost estimation. FedX also reduces the
number of intermediate joins by grouping sets of map-
pings in a single subquery (exclusive groups) and also
bound joins, a technique that uses the results from one
remote exclusive group to constrain the next grouped
query using SPARQL UNION.

SPLENDID extends Sesame16 adding a statistics-
based join reordering system. SPLENDID bases its
optimizations in join reordering rules based in a cost
model described in [37]. The statistics are collected
from VoID descriptions and allow to perform join re-
ordering in an efficient manner.

SemWIQ is a mediator-wrapper based system, where
heterogeneous data sources (available as CSV files,
RDF datasets or relational databases) are accessed by
a mediator through wrappers. Queries are expressed in
SPARQL and consider OWL as the vocabulary for the
RDF data. SemWIQ uses the Jena’s SPARQL proces-
sor ARQ to generate query plans and it applies its own
optimizers. These optimizers mainly consist in rules to
move down filters or unary operators in the query plan,
together with join reordering based on statistics. The
system has a registry catalog that indicates where the
sources to be queried are and the vocabulary to be used.
Currently, the system does not handle SPARQL end-
points but this is being updated at the time of writing
this paper.

15a framework for processing RDF data
16http://www.openrdf.org/
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DARQ extends the Jena’s SPARQL processor ARQ.
This extension requires attaching a configuration file
to the SPARQL query, with information about the
SPARQL endpoints, vocabulary and statistics. DARQ
applies logical and physical optimizations, focused on
using rules for rewriting the original query before query
planning (so as to merge basic graph patterns as soon as
possible) and moving value constrains into subqueries
to reduce the size of intermediate results. Other im-
portant drawback of DARQ is that it can only execute
queries with bound predicates. Unfortunately, DARQ is
no longer maintained.

Networked Graphs creates graphs for representing
views, content or transformations from other RDF
graphs, and allowing the composition of sets of graphs
to be queried in an integrated manner. The implementa-
tion considers optimizations such as the application of
distributed semi-join optimization algorithms.

5. Evaluation

The objective of our evaluation is to show that the ar-
chitecture chosen (the extension of a well-known data
workflow processing system) is more suitable for pro-
cessing the large amounts of RDF data that are available
in the Web, specially when remote SPARQL endpoints
do not impose any kind of restriction over the amount of
results returned. For that, we decided to run the experi-
ments in an uncontrolled environment such as the Web.
In this uncontrolled environment the behavior of end-
points and latencies can vary largely among executions,
hence leading to evaluation results that are not clearly
comparable across systems and replicable. In despite of
that, these evaluation results provide some indications
about the behaviors of these systems that will be im-
portant for characterizing each tool. We also run the
evaluation in a controlled environment using synthetic
data which will be distributed across several SPARQL
endpoints. In this evaluation we will show the behav-
ior of the optimization techniques proposed in Section
3.1, and how these optimization techniques reduce the
amount of intermediate results of the SPARQL queries
and thus how its use actually reduces the time needed
to process queries when compared to non optimized ap-
proaches.

5.1. Note on other systems’ evaluation

We compared our system with FedX 1.1 and FedX
1.1 using SERVICE, ARQ (2.8.8) and RDF::Query
(2.908). We chose these systems because two of them
are part of the official SPARQL implementations and

FedX is based in Sesame using an endpoint virtualiza-
tion approach. Also, FedX 1.1 adds statistical models
for join reordering and the SERVICE keyword to its nor-
mal federated query processing engine. When FedX is
not using SERVICE, it uses the predicates in the query
for identifying the right dataset to which the queries
should be directed which makes the system to query
more SPARQL endpoints than the other systems. In or-
der to provide a more fair comparison when querying
synthetic data, we adapted the datasets described in the
next section so the predicates in each SPARQL endpoint
are not repeated across them. In this way FedX can
uniquely identify each dataset by looking at the triple
pattern predicates so a more fair comparison can be
done. Thus, we compare twice to FedX: first we com-
pare to FedX using the SERVICE operator and next to
FedX using the virtualization of remote SPARQL end-
points. Regarding the query execution, ARQ differs
with the other implementations of SPARQL 1.1, since
it generates bind join queries like FedX, which also re-
sults in the generation of many SPARQL queries to the
same remote endpoint and sometimes many connection
errors from these servers. RDF::Query is the last sys-
tem evaluated and the one that follows more closely the
algorithms described in the official SPARQL 1.1 docu-
ment.

In this evaluation we opted for a representative set
of systems but without fully covering the state of the
art in distributed SPARQL query processing systems.
The aim of this section is to provide an overview
of the most common system architectures to federate
SPARQL queries, not to perform an exhaustive evalua-
tion of the existing SPARQL query federation systems.

5.2. Query Selection

We reuse many of the queries proposed in Fedbench
[41]. Fedbench proposes three sets of queries: a cross
domain set of queries which distributes queries across
widely used SPARQL endpoints such as DBpedia17 and
the LinkedMDB endpoint18; life sciences set of queries
which evaluate how systems query one of the largest do-
main in the LOD cloud; finally Fedbench also proposes
the use of the SP2Bench [42] evaluation benchmark, fo-
cused on evaluating the robustness and performance of
RDF data stores.

However, the queries in the Fedbench evaluation
framework do not take into account the SPARQL 1.1
Federated Query extension. That means that the queries

17http://dbpedia.org/sparql
18http://data.linkedmdb.org/sparql
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do not contain the SERVICE keyword, instead, the
query engines have to identify to which endpoint di-
rect each part of those queries. We modified manually
the queries adding the SERVICE keyword where nec-
essary. Furthermore, Fedbench does not contain many
SPARQL patterns that are common in most of the user
queries like FILTER or OPTIONAL [43].

Looking carefully, the queries in the original Cross
Domain query set did not contain any SPARQL pat-
tern that used either OPTIONAL or the FILTER oper-
ators. From the total of queries submitted to DBpedia
in a month the OPTIONAL operator is used in 39%
of these queries and the FILTER operator is used in a
46% of them [43]. Thus, we decided to complement the
query set with queries containing combinations of these
missing patterns (FILTER and OPTIONAL).The life
sciences domain queries contain a variety of SPARQL
queries, including OPTIONAL, FILTER and UNION
operators, thus, we decided not to add any new query to
the existing ones. The SP2Bench queries are taken from
the original benchmark targeted at measuring the per-
formance of RDF databases, and thus, some adaptations
have to be done if we want to use it within distributed
SPARQL query processors. In this set of queries also
some important query patterns are missing, and thus we
added some queries to solve this problem.

For evaluating the previous systems in an uncon-
trolled environment like the Web of data, we run all de-
scribed queries five times and we apply an arithmetic
mean to the results of these five queries. In this way, we
provide a more homogenized set of results that reflect
better the systems’ real performance. We also perform
two warm-up queries to avoid initial delay of the sys-
tems configuration on their first run.

5.2.1. New queries used in the evaluation
We added three queries to the cross domain query set

and five more queries to the SP2Bench set of queries.
The new cross domain queries are query CDQ4b, CDQ8
and CDQ9 in AppendixC. In CDQ4b we added a new
FILTER to the original query (cross domain query 4 in
[41]), asking now for those actors that appear in any
NY Times news, filtering for the film ’Tarzan’. Queries,
CDQ8 and CDQ9 are completely new. In CDQ8 we
query DBpedia and the El Viajero [44] SPARQL end-
point19 for data about countries and existing travel
books, we filter for countries with a surface greater than
20,000 km2. In CDQ9 we query DBpedia for countries
and optionally we get the existing travel books for these

19http://webenemasuno.linkeddata.es/sparql

countries from the El Viajero endpoint, completing this
information with the climate data at the CIA world fact-
book SPARQL endpoint20. Next we show CDQ9 to give
the reader an idea of the type of queries that we are con-
sidering:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX imdb: <http://data.linkedmdb.org/resource/movie>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?title ?actor ?news ?director ?film WHERE {
SERVICE <http://data.linkedmdb.org/sparql> {
?film dcterms:title ?title .
?film imdb:actor ?actor .
?film imdb:production_company
<http://data.linkedmdb.org/resource/production_company/15>.
?actor owl:sameAs ?x .
} OPTIONAL {
SERVICE<http://api.talis.com/stores/nytimes/services/sparql>{
?y owl:sameAs ?x .
?y <http://data.nytimes.com/elements/topicPage> ?news
}
}
FILTER (?title="Tarzan")

We also added five queries to the SP2Bench set of
queries in Fedbench, which are an extension of the
SP2Bench queries 7 and 8, that ask for proceedings or
journals and their authors. We added an extra level of
complexity first by adding OPTIONAL to those queries.
SP2BQ7b asks for journals, optionally it obtains the au-
thors’ publications in a conference, and later it obtains
also the authors’ names. We modified SP2BQ8 to ask
for papers in some collection of papers instead of ask-
ing for journal papers since SP2BQ7 already asks for
that. SP2BQ8b asks for all people and optionally ob-
tains all the papers these people published in a con-
ference for later on joining the results with the people
that published a paper in a collection. SP2BQ7c asks
for all journals, obtaining their authors with an optional
and filtering for the number of pages. Query SP2BQ8c
is the most complex query since it queries 4 different
SPARQL endpoints. In this query, we query for all
papers in a conference, optionally obtaining the peo-
ple who wrote them, next asking for those authors that
also wrote a journal paper and also the paper which is
in a paper collection. Query SP2BQ8d asks for all the
papers in conference proceedings, optionally obtaining
their authors and limiting the output data to those pro-
ceedings from the year 1950.

To the previous queries we add the queries in [45].
These queries follow the following path: first, query-
ing GeneId endpoint we obtain Pubmed which we use
to access the Pubmed endpoint (queries Q1 and Q2). In

20http://www4.wiwiss.fu-berlin.de/factbook/sparql
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these queries, we retrieve information about genes and
their references in the Pubmed dataset. From Pubmed
we access the information in the National Library of
Medicine’s controlled vocabulary thesaurus (queries Q3
and Q4), stored at MeSH endpoint, so we have more
complete information about such genes. Finally, to in-
crease the data retrieved by our queries, we also access
the HHPID endpoint (queries Q5, Q6 and Q7), which
is the knowledge base for the HIV-1 protein. These
queries can be found in [45].

5.3. Datasets description

For the cross domain queries mentioned in [41] we
used the datasets available at the DBpedia, Linked-
MDB, Geonames, the New York Times and El Viajero
SPARQL endpoints. We did not download any data to a
local server, instead we queried directly these endpoints.
We did similarly for the life sciences queries, access-
ing the default SPARQL endpoints (which are Drug-
bank, Kegg and DBpedia). For the SP2Bench queries,
we generated a dataset of 1.000.000 triples which we
clustered into 5 different SPARQL endpoints in a lo-
cal server. The local SPARQL endpoints were Journal
(410.000 triples), InCollections (8.700 triples), InPro-
ceedings (400.000 triples), People (170.000 triples) and
Masters (5.600 triples).

5.4. Results

Our evaluation was done on a Pentium
Xeon with 4 cores and 8 GB of memory
run by an Ubuntu 11.04. The data and the
queries used in this evaluation can be found in
http://www.oeg-upm.net/SparqlDQP/jws.
The results of our evaluation are shown in Figures 4, 5
and 6 for the Fedbench sets of queries in AppendixC.
The data for generating these charts can also be found
in AppendixB. In that appendix Tables B.1, B.2 and
B.3 present the results of the query executions. For
the life sciences set of queries we refer to Table B.2
and also to the previous work present in [45]. We
represent as 600,000ms those queries that need more
than 10 minutes to be answered by the evaluated
systems (SPARQL-DQP, SPARQL-DQP optimized,
ARQ, RDF::Query and FedX 1.1 with SERVICE and
without it). The results are presented in a logarithmic
scale.

The results presented in Figure 4 show how the eval-
uated systems performed in the Cross domain set of
queries. These queries show how the systems behave
in a typical situation, in which users query some of the
most common SPARQL endpoints. These endpoints, as

commented before have been DBpedia, the NYTimes
endpoint, LinkedMDB, Geonames, El Viajero and the
CIA world factbook. These remote endpoints usually
return between 10.000 and 2.00 results. This makes all
systems answer queries in reasonable times.

One of the problems when querying remote SPARQL
endpoints is the update rate of the data contained in the
datasets. Sometimes, when querying these endpoints
the data may have been updated and the queries used
previously may not return the same results (or any)
again. This is the situation in queries 5, 6 and 7, in
which there are no results returned. In the evaluation
of these queries, FedX 1.1 without using the SERVICE
keyword is the fastest since it uses first an ask query to
know there will be any result or not. Regarding the ex-
ecution of the rest of the queries, all systems performed
similarly, especially in the first four queries and in query
4b. For the same query 4b, all systems returned the
same amount of results, except for both FedX versions:
FedX 1.1 using SERVICE returns 84 results while the
FedX version that virtualizes a list of SPARQL end-
points if they were a single one returns no results. In
query 8, FedX using SERVICE gives an evaluation er-
ror due to the use of statistical-based pattern reordering
(“it is not supported filter reordering without statistics”)
and FedX without SERVICE returns no results. The
difference in the amount of results between both FedX
flavours is that they use a different approach for query-
ing the remote SPARQL endpoints. While the FedX
flavour that implements the SERVICE operator queries
only the specified RDF datasets, the other FedX ver-
sion virtualizes all the RDF datasets in its list and thus
uses a different query evaluation strategy (FedX with-
out SERVICE queries all SPARQL endpoints in its list
retrieving as much data as possible). The other systems
performed similarly but ARQ needed more time than
the others, almost one order of magnitude. ARQ also
inserted the FILTER expression in the SERVICE call,
giving a different amount of results that the other sys-
tems implementing SPARQL 1.1 Fed. In the last query,
SPARQL-DQP performs better than the others which ei-
ther do not halt (RDF::Query and ARQ do not finish
their processing) or give an error in the query execu-
tion (FedX with SERVICE: ”left join nor supported for
cost optimization”). We think that SPARQL-DQP per-
formed better because of the architecture chosen. Some
of the endpoints queried in CDQ9 returned 10,000 re-
sults, which is a significant increase comparing to the
other endpoints queried (normally they returned 2,000
results). When the amount of data increased, our system
performed better, as query CDQ9 showed. The amount
of results returned for these queries was of 8.604 for
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Figure 4: Cross Domain Query Results

Figure 5: Life Science Query Results

the systems following the SPARQL 1.1 Federation doc-
ument. The optimizations presented in Section 3.1 were
applied in queries CDQ4b, CDQ8 and CDQ9 but they
did not reduce the final result times. This is due to
the fact that the amount of data transferred between the
query operators was not significant enough.

Figure 5 shows the times needed for evaluating the
Life Science domain queries. We did not add any ex-
tra query to the evaluation, since the query set already
contains the most common patterns used in SPARQL
queries, and a more complete evaluation in the life sci-
ence domain can be found in [45]. As in the previ-
ous set of queries, the RDF datasets were updated and
some queries (LSQ4 and LSQ5) did not return any re-
sult. In general, all systems behaved similarly in this
set of queries. ARQ performed a bit worse, mainly due
to the way it manages the connections with the remote
SPARQL endpoints (ARQ generates a set of binding
queries restricting some of the remote SPARQL queries
which generates an overload over the remote endpoints,
which was a common problem for all systems). The
Life Science domain SPARQL endpoints usually reject
queries from a host when too many connections are
asked, which in the case of an intense evaluation may
be a common problem. Life sciences servers behaved
worse in our evaluation returning server errors, spe-

cially when the bound join query technique was used.
Regarding SPARQL-DQP and the other systems, they
performed similarly but when data increased in query
LS7. In that situation, SPARQL-DQP worked better
than other systems. The implemented optimizations
(specially the implementation of the pattern reordering
rules described in Section 3.1) are less noticeable when
the amount of transferred data (and number of interme-
diate results) is lower, but there is no loosing of perfor-
mance in the applications of the rules.

The results represented in Figure 6 show how the
evaluated systems behaved with larger amounts of data.
In this evaluation, the SPARQL endpoints do not have
any result limit restriction, which is of key importance
in the evaluation. The configuration of the endpoints is
as follows: the People endpoint contains 82.685 per-
sons with name, the InProceedings endpoint contains
65.863 in proceedings with author, the InCollections
contains 615 papers in belonging to a collection of
papers with author, and the Journal endpoint contains
83.706 journals with author. In total we used 1.000.000
triples distributed in the previous endpoints. From a
results point of view, all the systems that implement
the SPARQL 1.1 Federated Query extension returned
the same amount of results in the first set of queries
(SP2BQ1 to SP2BQ5). In the rest of the queries, again
the systems implementing the SPARQL federation ex-
tension returned the same amount of results, while FedX
(not using SERVICE) returned (when possible) different
amounts due to FedX accesses the SPARQL endpoints
virtualizing all of them rather than pointing each por-
tion of the query to the dataset the user specifies. Re-
garding the times needed for executing the evaluation
queries, all systems performed similarly in the first five
queries, being SPARQL-DQP a bit worse than the oth-
ers but better than RDF::Query which was the worse
system in queries SP2BQ3, SP2BQ4 and SP2BQ5. In
these queries, both versions of FedX performed bet-

17



Figure 6: SP2Bench Query Results

ter than the other systems. We think that this is due
to the use of its architecture design which parallelizes
the execution of the queries and the use of the BIND
JOIN technique. In SP2BQ6 none of the systems re-
turned results in reasonable times, not because of the
amount of data transferred but because of the time
needed for the processing of these data. In the rest of
the queries (SP2BQ7, SP2BQ7b, SP2BQ7c, SP2BQ8,
SP2BQ8b, SP2BQ8c, SP2BQ8d) only SPARQL-DQP
and SPARQL-DQP without optimizations return results
in time. The reason for SPARQL-DQP return results in
reasonable times is the selection of its base architecture.
We extend an architecture designed for working in data
intensive scenarios (like [24]), which is based on a data
workflow system using a streaming model for transfer-
ring the data. In that architecture each query/data pro-
cessing activity is executed concurrently, in either a re-
mote node in the federation or in the main node in the
configuration [13] and the data is also consumed as soon
as it is generated.

Regarding the optimizations described in Section 3.1,
it is possible to notice their effect specially in queries
SP2BQ7b, SP2BQ8b, SP2BQ8c in which rule 2 is ap-
plied. Rule 1 is also applied in queries SP2BQ7c and
SP2BQ8d, in which it can also be noticed a minor re-
duction of the execution times.

Looking at the evaluation performed as a whole, it is
possible to observe three different sets of results from
this evaluation (notice that in Figures 4, 5 and 6 results
are represented in logarithmic scale and thus for more
accurate results we refer the reader to AppendixB).
The first set (standard Fedbench Life Sciences domain,
Cross domain and SP2 queries) are those that are not
optimized because the reordering rules in Section 3.1
are not applicable. The second query group repre-

sents the class of queries that can be optimized using
our approach, but where the difference is not too rele-
vant, because the less amount of transferred data (no-
tice that the rules are applied but their execution time
is negligible). In this query group we identify query
7 in the Life Sciences domain (LSQ7), Q4 in [45],
queries CDQ4b, CDQ8 and CDQ9 in the cross domain
query set and queries SP2BQ7c and SP2BQ8d in the
SP2Bench evaluation. The last group of queries (queries
SP2BQ7b, SP2BQ8c and SP2BQ8d of the SP2bench
queries) shows a clear optimization when using the
well-designed patterns rewriting rules. These optimiza-
tions are better noticed when looking at the result ta-
bles in AppendixB. In there query execution times of
queries SP2B8b and SP2B8c are reduced in a 50% of
its non optimized time. This is even more noticeable
when normalizing the time results and using a geomet-
ric mean for representing these results, as described in
[46]. In our previous work presented in [45] similar
results were noticed, specially when always querying
remote SPARQL endpoints, since the amount of time
for transferring data from several nodes to another will
be much higher. In query SP2BQ8b the reduction of
intermediate results is done by joining first the SER-
VICE call to the endpoint containing the collection of
scientific papers with the first solution mappings from
the SERVICE call to the endpoint containing data about
people. The amount of intermediate results is reduced
significantly which is specially noted in the execution
of the OPTIONAL part of the query, when optionally
adding the solution mappings from a SERVICE call to
the endpoint containing conference papers.

This evaluation complements the evaluation results
from [45] in which we evaluated the system (SPARQL-
DQP) and the rewriting rules in a similar way but focus-
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ing only in a life science domain. In that evaluation the
same result patterns are observed, in which three sets
of results are observed, all similar to the ones observed
in this work. From that paper we highlight the useful-
ness of applying the rewriting rules described in Sec-
tion 3.1: in query 6 in [45] the amount of transferred
data varies from a join of 150, 000 × 10, 000 tuples to a
join of 10, 000 × 23, 841 tuples (using Entrez, Pubmed
and MeSH endpoints), which highly reduced the global
processing time of the query.

Regarding the other systems, they all behaved sim-
ilarly. ARQ and RDF::Query query evaluation times
were similar giving the same results as SPARQL-DQP
since they implement the same SPARQL specification.
They did not return results in the same queries in the
SP2B evaluation and performed similarly in the Life
Science evaluation, noticing the same problem with the
remote server overloads. FedX and FedX with SER-
VICE also performed similarly to the other systems, but
in general FedX was faster than the other systems.

6. Conclusions

In this paper, we first proposed a formal syntax for
the SPARQL 1.1 Federated Query extension, along
with a formalization of its semantics. In this study,
we identified the problems when evaluating the pat-
tern SERVICE ?X, which requires the variable ?X to
be bound before the evaluation of the entire pattern.
Thus, we proposed syntactic restrictions for assuring
the boundedness of SERVICE ?X, which allows us to
safely execute such patterns. We also extended the well-
designed patterns definition [8] with the SERVICE op-
erator, which allows to reorder SPARQL queries. This
last result is of key importance since it allows to reduce
the amount of intermediate results in the query execu-
tion. We implemented all these notions in the SPARQL-
DQP system and we evaluated it using an existing eval-
uation framework, which we extended for covering a
broader range of common SPARQL queries.

The first conclusion we want to highlight is the im-
portance of using a specific architecture for dealing with
large amounts of data. As we have seen in the eval-
uation section, all systems were not able to process
from query 5 in the SP2B query set onwards. All the
systems needed more than 10 minutes to answer them
while our system, SPARQL-DQP finished in reasonable
times. This is due to the architecture chosen, in which
the data transfer is done by using streams of data be-
tween OGSA-DAI nodes (data is consumed as soon as
it is generated) and the data processing is done concur-
rently in each of these nodes. OGSA-DAI and OGSA-

DQP architectures have been highly used in data in-
tensive applications [13, 36] and certainly the Web of
data is a data intensive scenario. Thus, the approach
to follow should be one that deals with such amounts
of data. We also highlight that this architecture is tar-
geted at dealing with SPARQL endpoints with no re-
sult limitation, which is not the common case in the
current endpoints available to common users. But if a
more experienced users want to access unrestricted re-
mote SPARQL endpoints, a more robust approach than
the existing ones will be needed. Although the architec-
ture is focused for dealing with large amounts of data,
SPARQL-DQP does not perform badly when dealing
with restricted SPARQL endpoints.

The next conclusion we want to highlight is the
applicability of the rewriting rules presented in Sec-
tion 3.1. As we have seen in the evaluation sec-
tion, the application of these rules reduce the execu-
tion time when a well-designed pattern of the form
((P1 OPT P2) AND P3) or ((P1 FILTER R) AND P2) is
present in the SPARQL query. This situation is shown
in query SP2BQ8c.rq, in which there are four remote
SERVICE calls joined together with an OPTIONAL op-
erator and two join operators. The amount of intermedi-
ate results in this query is highly reduced when the first
rewriting pattern is applied at the beginning of the query
execution. We also highlight that these rewriting rules
can be applied to any well-designed pattern, and the cost
of applying them is negligible in most of the scenar-
ios. Also, to check whether a SPARQL query is well-
designed and to check the safeness condition mentioned
previously may produce some overhead, but it is negli-
gible as well, specially when SPARQL queries scale out
in the amount of returned results. Besides of this small
proof of concept, we refer the reader to [45]. In that
work the rewriting rules are more intensively used, and
the results highlighted here can also be observed in that
work.

Tools for federating queries across the Web of Data
are being released frequently. These increase of tools
for accessing distributed RDF datasets are only the first
step towards a more important goal: to efficiently and
effectively query the Web of Data. Currently there are
thousands of datasets, and to select to which ones point
the SPARQL queries is a complicated task, and part of
the research of distributed SPARQL query processing
should aim towards solving such great problem.

Focusing more in specific aspects of SPARQL query
federation, one of the most common problems we had
to deal with was the instability of network connections.
Data transfer may be interrupted frequently thus mak-
ing difficult to query the LOD cloud. We believe that
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one approach for solving these problems that we experi-
enced is the implementation of adaptive query process-
ing techniques [47] like the ones present in [10]. Also,
exploration of the datasets dynamics is an important is-
sue to deal with [48] since data changed during our eval-
uations. Focusing more in the theoretical aspects of this
research work, an interesting contribution would be the
analysis of the applicability of the well-designed pat-
terns to SPARQL subqueries. Some work about this re-
search topic has already been carried out [49, 50] but
there is still space for improvement.
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AppendixA. Proof of Proposition 1

Let P be a SPARQL query and ?X ∈ var(P). Next we
show that if ?X ∈ SB(P), then ?X is bound in P.

The proof is by induction on the structure of P. If
P is a triple pattern the proposition trivially holds. Now
assume that the proposition holds for patterns P1 and P2
and consider the following cases:

• Assume that P = (P1 AND P2) and ?X ∈ SB(P).
Then we have that SB(P) = SB(P1) ∪ SB(P2) and,
therefore, ?X ∈ SB(P1) or ?X ∈ SB(P2). With-
out loss of generality assume that ?X ∈ SB(P1).
Now, let DS be a dataset, G an RDF graph in
DS and µ a mapping such that µ ∈ JPKDS

G . In
order to prove that ?X is bound in P, we have
to demonstrate that ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P)). Given that
µ ∈ JPKDS

G , we have that µ = µ1 ∪ µ2, where
µ1 ∈ JP1KDS

G and µ2 ∈ JP2KDS
G . By induction hy-

pothesis, we have that ?X is bound in P1 since
?X ∈ SB(P1). Hence, given that µ1 ∈ JP1KDS

G ,
we conclude that ?X ∈ dom(µ1) and µ1(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P1)). Thus, given
that µ(?X) = µ1(?X), dom(µ1) ⊆ dom(µ) and
dom(P1) ⊆ dom(P), we conclude that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P)),
which was to be shown.

• Assume that P = (P1 UNION P2) and ?X ∈ SB(P).
Then we have that SB(P) = SB(P1) ∩ SB(P2)
and, therefore, ?X ∈ SB(P1) and ?X ∈ SB(P2).
Now, let DS be a dataset, G an RDF graph in
DS and µ a mapping such that µ ∈ JPKDS

G . In
order to prove that ?X is bound in P, we have
to demonstrate that ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P)). Given that
µ ∈ JPKDS

G , we have that µ ∈ JP1KDS
G or µ ∈

JP2KDS
G . Assume without loss of generality that

µ ∈ JP1KDS
G . By induction hypothesis, we have that

?X is bound in P1 since ?X ∈ SB(P1). Hence, given
that µ ∈ JP1KDS

G , we conclude that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P1)).
Thus, given that dom(P1) ⊆ dom(P), we con-
clude that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be shown.

• Assume that P = (P1 OPT P2) and ?X ∈ SB(P).
Then we have that SB(P) = SB(P1) and, there-
fore, ?X ∈ SB(P1). Now, let DS be a dataset, G
an RDF graph in DS and µ a mapping such that
µ ∈ JPKDS

G . In order to prove that ?X is bound
in P, we have to demonstrate that ?X ∈ dom(µ)
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and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P)).
Given that µ ∈ JPKDS

G , we have that either µ =

µ1 ∪ µ2, where µ1 ∈ JP1KDS
G and µ2 ∈ JP2KDS

G ,
or µ ∈ JP1KDS

G and µ is not compatible with any
mapping in JP2KDS

G .

– In the first case, given that ?X is bound in
P1 (since ?X ∈ SB(P1)) and µ1 ∈ JP1KDS

G ,
we have that ?X ∈ dom(µ1) and µ1(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P1)). Thus,
given that µ(?X) = µ1(?X), dom(µ1) ⊆
dom(µ) and dom(P1) ⊆ dom(P), we conclude
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

– In the second case, given that ?X is bound
in P1 (since ?X ∈ SB(P1)) and µ ∈ JP1KDS

G ,
we have that ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P1)). Thus,
given that dom(P1) ⊆ dom(P), we conclude
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

• Assume that P = (P1 FILTER R), where R is a
built-in condition, and that ?X ∈ SB(P). Then
we have that SB(P) = SB(P1) and, therefore,
?X ∈ SB(P1). Now, let DS be a dataset, G
an RDF graph in DS and µ a mapping such that
µ ∈ JPKDS

G . In order to prove that ?X is bound
in P, we have to demonstrate that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P)).
Given that µ ∈ JPKDS

G , we have that µ ∈ JP1KDS
G and

µ |= R. By induction hypothesis, we have that ?X
is bound in P1 since ?X ∈ SB(P1). Hence, given
that µ ∈ JP1KDS

G , we conclude that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P1)).
Thus, given that dom(P1) ⊆ dom(P), we con-
clude that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be shown.

• If P = (GRAPH a P1), where a ∈ I, then
we have that SB(P) = ∅, and we conclude that
the property trivially holds. Thus, assume that
P = (GRAPH ?Y P1) and ?X ∈ SB(P), and let
DS be a dataset, G an RDF graph in DS and
µ a mapping such that µ ∈ JPKDS

G . In order to
prove that ?X is bound in P, we have to demon-
strate that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), for which we consider two
cases. Notice that in these cases, we assume that
DS = {(def ,G0), (g1,G1), . . . (gk,Gk)} with k ≥ 1,

as if we have that DS = {(def ,G)}, then JPKDS
G = ∅,

which contradicts the fact that µ ∈ JPKDS
G .

– Assume that ?X ,?Y . Then we have that
there exists g ∈ names(DS ) such that µ ∈
JP1KDS

graph(g,DS ). Moreover, we also have that
SB(P) = SB(P1) ∪ {?Y}, from which we con-
clude that ?X ∈ SB(P1). Thus, we have
by induction hypothesis that ?X is bound in
P1. Therefore, given that µ ∈ JP1KDS

graph(g,DS ),
we have that ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P1)). Hence,
given that dom(P1) = dom(P), we conclude
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

– Assume that ?X =?Y . Then by definition of
the semantics of the GRAPH operator, we
have that there exists g ∈ names(DS ) such
that µ(?X) = g. Therefore, we conclude
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

• Assume that P = (SERVICE c P1), where c ∈ I ∪
V . Then given SB(P) = ∅, we conclude that the
property trivially holds.

• Assume that P = (P1 BINDINGS ~W { ~A1, . . . , ~An})
and ?X ∈ SB(P). Then given that

SB(P) = SB(P1) ∪

{?Y | ?Y is included in ~W and for
every i ∈ {1, . . . , n} : ?Y ∈ dom(µ ~W 7→ ~Ai

)},

we conclude that either ?X ∈ SB(P1) or ?X is in-
cluded in ~W and for every i ∈ {1, . . . , n}, it holds
that ?X ∈ dom(µ ~W 7→ ~Ai

). Now, let DS be a dataset, G
an RDF graph in DS and µ a mapping such that µ ∈
JPKDS

G . In order to prove that ?X is bound in P, we
have to demonstrate that ?X ∈ dom(µ) and µ(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P)). Given that
µ ∈ JPKDS

G , we have that there exist µ1 ∈ JP1KDS
G

and k ∈ {1, . . . , n} such that µ = µ1 ∪ µ ~W 7→ ~Ak
. Next

we consider two cases to prove that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS ) ∪ names(DS ) ∪ dom(P)).

– First, assume that ?X ∈ SB(P1). Then by in-
duction hypothesis we have that ?X is bound
in P1. Thus, given that µ1 ∈ JP1KDS

G , we
conclude that ?X ∈ dom(µ1) and µ1(?X) ∈
(dom(DS ) ∪ names(DS ) ∪ dom(P1)). There-
fore, given that dom(µ1) ⊆ dom(µ), µ(?X) =
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µ1(?X) and dom(P1) ⊆ dom(P), we conclude
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

– Second, assume that ?X is included in ~W
and for every i ∈ {1, . . . , n}, it holds that
?X ∈ dom(µ ~W 7→ ~Ai

). Then we have that ?X ∈
dom(µ ~W 7→ ~Ak

), which implies that µ(?X) ∈
dom(P) (since µ = µ1∪µ ~W 7→ ~Ak

, and if a ∈ (I∪
L) is mentioned in ~Ak, then a is in dom(P)).
Thus, given that dom(µ ~W 7→ ~Ak

) ⊆ dom(µ)
and µ(?X) = µ ~W 7→ ~Ak

(?X), we conclude that
?X ∈ dom(µ) and µ(?X) ∈ (dom(DS ) ∪
names(DS ) ∪ dom(P)), which was to be
shown.

• Assume that P = (SELECT W P1) and ?X ∈

SB(P). Then we have that SB(P) = (W ∩ SB(P1))
and, therefore, ?X ∈ W and ?X ∈ SB(P1). Thus,
we conclude by induction hypothesis that ?X is
bound in P1. Therefore, we have by definition of
boundedness that ?X is bound in P, which was to
be shown.
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AppendixB. Query Result Tables

CD Q1 CD Q2 CD Q3 CD Q4 CD Q4b CD Q5 CD Q6 CD Q7 CD Q8 CDQ9

SPARQL-DQP NO OPT 4489 2404,6 11580 10645 14725 925 3206,8 9966,6 15993,4 32345

SPARQL-DQP 2685,2 2429,8 9734,6 12076,4 13717,2 1866,2 872 8607,2 18270,6 31744

ARQ 5657,6 3139,6 20407,6 2147,2 40864 32739,4 2734,8 577,6 118788,4 600000

RDF::Query 2310,6 2119,6 19777 19893,8 1155,2 7854,2 783,2 21129,2 9007,3 600000

FedX SERVICE 2312,5 4329 3682,1 1401 28327,8 2571,1 784 783,6 0 0

FedX NO SERVICE 2258,8 2570,6 4997 3018,2 1388,4 15,6 15 15 43292,6 0

Table B.1: Results of Cross domain queries (Evaluation times in milliseconds)

LS Q1 LS Q2 LS Q3 LS Q4 LS Q5 LS Q6 LS Q7

SPARQL-DQP NO OPT 9497,8 3000,4 132935,6 35558 10458 13586 12640,8

SPARQL-DQP 5667,6 2320,4 83830,4 14822,4 6011 10052 10425

ARQ 4689,7 3300 47204,9 13325,7 13391,4 5390,9 4479,9

RDF::Query 5100,2 2119,4 89275,4 61663,8 570,4 43575,2 58824,6

FedX SERVICE 6134,2 2391 141365,4 364,2 22011 1662,8 24652

FedX NO SERVICE 16427,4 4817,2 0 15 23858,6 1662,8 24652

Table B.2: Results of life sciences domain queries (Evaluation times in milliseconds)

SP2B Q1 SP2B Q2 SP2B Q3 SP2B Q4 SP2B Q5 SP2B Q6 SP2B Q7 SP2B Q7b SP2B Q7c SP2B Q8 SP2B Q8b SP2B Q8c SP2B Q8d

SPARQL-DQP NO OPT 511 25275 9717,8 495,4 358,2 600000 62710,6 92543,6 30066,2 46535,6 61154 100220,4 29533

SPARQL-DQP 476,4 24386 9204 495,4 358,2 600000 60433 77217,6 30471,6 45867,2 25287,6 42877,6 27851,2

ARQ 77 48262,2 196549,8 233497,6 4935,8 600000 33768,8 600000 600000 600000 600000 600000 600000

RDF::Query 165,25 21232,75 8578,25 226,75 169 600000 600000 600000 600000 90751,6 600000 600000 600000

FedX SERVICE 106,2 20949 8296 351,4 490 600000 600000 0 0 239535,75 0 0 0

FedX NO SERVICE 125,8 54224 6699,6 375,8 466 600000 600000 600000 600000 600000 600000 600000 600000

Table B.3: Results of SP2B domain queries (Evaluation times in milliseconds)

AppendixC. New Queries used in the Evaluation

SP2BQ7b PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?article ?inproc ?person ?name
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {
?article rdf:type bench:Article .
?article dc:creator ?person .
}
OPTIONAL {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type bench:/Inproceedings> .
?inproc dc:creator ?person .

}
}
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name .
}
}
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SP2BQ7c PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?article ?inproc ?person ?name ?title ?pages
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {
?article rdf:type <http://localhost/vocabulary/bench/Article> .
?article dc:creator ?person .
?article swrc:pages ?pages
}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name .

}
}
FILTER (?pages = 200)

SP2BQ8b PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?person ?name ?incol ?inproc
WHERE {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name
}
OPTIONAL {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type bench:Inproceedings .
?inproc dc:creator ?person .

}
}
SERVICE <http://localhost:3030/InCol/sparql> {
?incol rdf:type bench:Incollection .
?incol dc:creator ?person .
}

SP2BQ8c PREFIX dcInproc: <http://purl.org/dc/elements/1.1/Inproc/>
PREFIX dcJournal: <http://purl.org/dc/elements/1.1/Journal/>
PREFIX dcIncol: <http://purl.org/dc/elements/1.1/Incol/>
PREFIX benchInproc: <http://localhost/vocabulary/bench/Inproc/>
PREFIX benchIncol: <http://localhost/vocabulary/bench/Incol/>
PREFIX benchJournal: <http://localhost/vocabulary/bench/Journal/>
PREFIX dctermsInproc: <http://purl.org/dc/terms/Inproc/>
PREFIX rdfInproc: <http://www.example.org/rdf/type/rdfinproc#>
PREFIX rdfIncol: <http://www.example.org/rdf/type/rdfincol#>
PREFIX rdfJournal: <http://www.example.org/rdf/type/rdfjournal#>
PREFIX foafPeople: <http://xmlns.com/foaf/0.1/People/>
PREFIX foafInproc: <http://xmlns.com/foaf/0.1/Inpror
PREFIX swrcInproc: <http://inproc.swrc.ontoware.org/ontology#>
PREFIX rdfsInproc: <http://www.w3.org/2000/01/inproc-rdf-schema#>
SELECT DISTINCT ?person ?incol ?inproc ?title ?article
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {
?article rdfJournal:type benchJournal:Article .
?article dcJournal:creator ?person .

}
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdfInproc:type benchInproc:Inproceedings .

?inproc dcInproc:creator ?person .
?inproc benchInproc:booktitle ?booktitle
OPTIONAL {

?inproc benchInproc:abstract ?abstract
}

}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {
?person foafPeople:name ?name
}

}
SERVICE <http://localhost:3030/InCol/sparql> {
?incol rdfIncol:type benchIncol:Incollection .
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?incol dcIncol:creator ?person .
}
}

SP2BQ8d PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT DISTINCT ?title ?name
WHERE {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type <http://localhost/vocabulary/bench/Inproceedings> .
?inproc dc:creator ?person .
?inproc dc:title ?title .
?inproc dcterms:issued ?yr
}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name

}
}
FILTER (?yr="1950")

CDQ8 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX viajero: <http://webenemasuno.linkeddata.es/ontology/OPMO/>
SELECT ?Book ?Country ?Area
WHERE {
SERVICE <http://dbpedia.org/sparql> {
?Country rdf:type <http://dbpedia.org/ontology/Country> .
?Country dbprop:areaKm ?Area
}
OPTIONAL {
SERVICE <http://webenemasuno.linkeddata.es/sparql> {
?Book viajero:refersTo ?Country . }

}
FILTER(?Area < "20000"ˆˆxsd:integer)

CDQ9 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX viajero: <http://webenemasuno.linkeddata.es/ontology/OPMO/>
PREFIX factbook: <http://www4.wiwiss.fu-berlin.de/factbook/ns#>

SELECT ?Book ?Country ?Area ?climate
WHERE {
SERVICE <http://dbpedia.org/sparql> {
?Country rdf:type <http://dbpedia.org/ontology/Country> .
?Country dbprop:areaKm ?Area .
?Country rdfs:label ?countryLabel
}
OPTIONAL {
SERVICE <http://webenemasuno.linkeddata.es/sparql> {
?Book viajero:refersTo ?Country .

}
}
SERVICE <http://www4.wiwiss.fu-berlin.de/factbook/sparql> {
?CountryCIA rdfs:label ?countryLabel .
?CountryCIA rdf:type <http://www4.wiwiss.fu-berlin.de/factbook/ns#Country> .
?CountryCIA factbook:climate ?climate
}
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