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Abstract. Hundreds of public SPARQL endpoints have been deployed
on the Web, forming a novel decentralised infrastructure for querying bil-
lions of structured facts from a variety of sources on a plethora of topics.
But is this infrastructure mature enough to support applications? For 427
public SPARQL endpoints registered on the DataHub, we conduct vari-
ous experiments to test their maturity. Regarding discoverability, we �nd
that only one-third of endpoints make descriptive meta-data available,
making it di�cult to locate or learn about their content and capabili-
ties. Regarding interoperability, we �nd patchy support for established
SPARQL features like ORDER BY as well as (understandably) for new
SPARQL 1.1 features. Regarding e�ciency, we show that the perfor-
mance of endpoints for generic queries can vary by up to 3�4 orders of
magnitude. Regarding availability, based on a 27-month long monitor-
ing experiment, we show that only 32.2% of public endpoints can be
expected to have (monthly) �two-nines� uptimes of 99�100%.

1 Introduction

Although there are now tens of billions of facts spanning hundreds of Linked
Datasets on the Web, it is still unclear how applications can begin to make e�ec-
tive use of these data. A foundational requirement for any application is the abil-
ity to discover, access and query the data. Addressing this need, SPARQL�the
query language for RDF�was �rst standardised in 2008 [18], and an extension in
the form of SPARQL 1.1 was also recently standardised [12]. SPARQL has thus
been a core focus of research and development for Semantic Web technologies
in the past �ve years, with various research proposals, benchmarks, open-source
and commercial tools emerging to address the challenges of processing SPARQL
queries e�ciently, at large scale and in distributed environments.

These advances in SPARQL technology and tools have been paralleled by the
deployment of public SPARQL endpoints on the Web: to date, over four hun-
dred such endpoints have been announced on the DataHub site4, with approx.
68% of o�cial �LOD Cloud� datasets claiming to host an endpoint.5 Prominent

4 A Linked Data catalogue: http://datahub.io/group/lod (l.a.: 2013-05-10)
5 http://lod-cloud.net/state/ (l.a.: 2013-05-10)
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endpoints are now logging signi�cant levels of tra�c, where, e.g., studies of logs
from the DBpedia SPARQL engine reveal that it is servicing in the order of hun-
dreds of thousands of queries per day [17,8]. Answering queries that span the
content of these endpoints is then an open research question, and one that has
been tackled by a host of works on SPARQL federation [12,1,3,19,20,16,5,11].

Despite all of this momentum, however, few applications are emerging to
exploit this novel querying infrastructure. In this paper, we thus ask: is this
novel decentralised SPARQL infrastructure ready for action? Fo-
cusing on the technical challenges (where we rather refer to, e.g., [13, � 2], for
content-related discussion), we take a list of 427 public SPARQL endpoints from
the DataHub site6 and present the following core experiments:

� 2 We �rst look at the discoverability of the 427 endpoints, analysing how
endpoints can be located, what meta-data are available for them, etc.

� 3 We analyse interoperability, using SPARQL 1.0 and SPARQL 1.1 test-
case suites to identify features (not) supported by these endpoints.

� 4 We tackle efficiency by testing the time taken by individual endpoints to
answer generic, content-agnostic SPARQL queries over HTTP.

� 5 We measure reliability based on a 27-month long monitoring experiment
of the uptimes of public SPARQL endpoints.

Experimental Overview: All results were collated in May 2013. The most
recent list of endpoints that we retrieved from DataHub contained 427 SPARQL
endpoint URLs. Here considering �pay-level-domains��the level at which a do-
main can be registered and must be individually paid for�we found 159 domains
hosting the 427 endpoints: a mean of 2.7±6.3 endpoints per domain. 54 (12.6%)
endpoints are hosted by rkbexplorer.com, 37 (8.7%) by bio2rdf.org, 36 (8.4%)
by talis.com, 24 (5.6%) by eagle-i.net, 20 (4.7%) by kasabi.com, etc.

For running queries, we use Apache Jena ARQ 2.9.3 requesting XML or
RDF/XML results, with a �rst-result timeout of 1 minute and an overall timeout
of 15 minutes. We run queries sequentially and enforce a politeness wait of one
second between the end of execution of one query and the start of the next.

For reproducibility, all code, queries and results relating to this paper�
including larger versions of the graphical �gures presented herein�are available
online at http://labs.mondeca.com/sparqlEndpointsStatus/iswc2013/.

Example Use-case: To ground our discussion, we refer throughout the pa-
per to a hypothetical use-case involving a plug-in for online video sites such as
YouTube, Vimeo, etc. The plug-in detects protagonists of the video (e.g., the TV
series that the clip is from, the music artist for the track, the location where the
video is taken, etc.) and attempts to discover and query relevant public SPARQL
endpoints for meta-data about the protagonists (and the relationships between
them) such that can be processed and presented to the user in a side-bar.

6 The raw list is fetched from the DataHub API: http://datahub.io/api/2/search/
resource?format=api/sparql&all_fields=1&limit=10000 (l.a.: 2013-05-10)
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2 Endpoint Descriptions

A prospective consumer of SPARQL endpoints �rst needs to discover relevant
endpoints that support the features they require for their application domain. We
identify two main vocabularies that current SPARQL endpoints use to describe
their features and content: VoID [2] and SPARQL 1.1 Service Descriptions [21].

2.1 VoID Catalogues

A consumer may (like us) use the DataHub catalogue to collect endpoint URLs.
However, to �nd relevant endpoints, the consumer will need descriptions of their
content. Relatedly, the VoID vocabulary can be used to describe an RDF dataset,
including statistics about size, schema terms used, frequencies of terms, access
mechanisms, URI patterns mentioned, a link to an OpenSearch Description Doc-
ument, as well as a link to the endpoint in question.

Experiments:We identify two primary online catalogues that an agent could
query to �nd relevant SPARQL endpoints. The �rst is the aforementioned
DataHub catalogue. The second is the �VoID store�7 hosted by the RKBEx-
plorer project [9]. We issue the following template query to both:

PREFIX void: <http://rdfs.org/ns/void#>
SELECT DISTINCT ?ds
WHERE { ?ds a void:Dataset ; void:sparqlEndpoint %%ep . }

We instantiate this query for each of the 427 endpoints by substituting the
placeholder �%%ep� with the given service URI. We then execute each query
against the two catalogue interfaces. We also execute the query directly against
the endpoint itself in case it indexes its own VoID description and look in the
http://{domain}/.well-known/void location recommended for use with VoID.8

Results: The DataHub catalogue returned results for 142 endpoints (33.3%)
and the VoID store for 96 endpoints (22.4%). Many of these VoID URLs referred
to the root domain folder or a models/ folder with �lename void.ttl. We found
that only 69 endpoints (16.2%) indexed VoID data about themselves. Looking
up the .well-known location yielded no VoID �les. In summary, we see that
discoverable VoID descriptions for the content of public endpoints are sparse.

2.2 SPARQL 1.1 Service Descriptions

Once the consumer has found an endpoint relevant to their needs (be it using a
VoID description or other means), they will need meta-data about the capabilities
of the endpoint: which query features, I/O formats or entailments are supported;
how default and named graphs are con�gured; etc. Such capabilities can be
described using the SPARQL 1.1 Service Description (SD) vocabulary [21].

7 http://void.rkbexplorer.com/sparql/ (l.a.: 2013-05-10)
8 http://vocab.deri.ie/void/autodiscovery; (l.a.: 2013-05-10).

http://void.rkbexplorer.com/sparql/
http://vocab.deri.ie/void/autodiscovery


Table 1. Number of endpoint descriptions
containing SD and VoID properties

Predicate № Predicate №

sd:resultFormat 38 void:sparqlEndpoint 5
sd:feature 36 void:classes 2
sd:supportedLanguage 36 void:datadump 2
sd:url 34 void:triples 2
sd:endpoint 33 void:vocabulary 2

Table 2. Server names
in HTTP Get responses

Server-�eld Pre�x №

Apache 157
Virtuoso 71
Jetty 25
nginx 23
Fuseki 6
4s-httpd 3

Experiments: The Service Description of an endpoint can be retrieved by
dereferencing the endpoint URI itself [21]. We thus performed a HTTP Get
request for each of the 427 endpoint URIs, following redirects, requesting RDF
formats (viz. RDF/XML, N-Triples, Turtle or RDFa). We also check the resulting
HTTP headers for interesting meta-data relating to the endpoint.

Results: In total, 151 lookups (35.4%) returned a 200 OK response code. Only
51 endpoints (11.9%) returned an RDF-speci�c content-type (RDF/XML in all
cases) and 95 endpoints (22.2%) returned the typical HTML query interface
(without embedded RDFa). We received 173 �4xx� responses (40.5%) indicating
client-side errors and 47 �5xx� responses (11%) indicating server-side errors.
(Section 5 will refer to these availability issues in greater detail.)

We then inspected the dereferenced content for SD and VoID meta-data using
Apache Any23 Java library9 to extract RDF. Table 1 lists the top-5 SD and VoID
properties by the number of descriptions they appear in (note: sd:url is a non-
standard term). We found 39 endpoints (9.1%) o�ering some SD meta-data and
a handful providing VoID meta-data by dereferencing.

Finally, we checked the HTTP response headers for meta-data about the un-
derlying SPARQL service. The most interesting meta-data came from the Server
�eld, which sometimes identi�ed the SPARQL engine powering the endpoint.
Table 2 lists some common values found: though most values still referred to
generic Web servers/proxies such as Apache, we could identify Virtuoso, Fuseki
and 4store SPARQL implementations from the Server �eld.

2.3 Summary of Discoverability

We identify two existing RDF vocabularies that can be used to �advertise� the
content and features of an endpoint respectively, potentially allowing for remote
discovery. However, locating such descriptions is di�cult. Catalogues provide
VoID descriptions for about one-third of the endpoints, and other methods of
�nding VoID descriptions are largely unsuccessful: in most cases, the VoID de-
scriptions (used, e.g., for federation [11]) probably do not exist. Where available,
SD meta-data is easy to �nd using �follow-your-nose� principles, but being a rel-
atively new W3C proposal, is supported by fewer than one-tenth of endpoints.
Furthermore, it is unclear if VoID and SD alone are enough to enable mature

9 http://any23.apache.org/ (l.a.: 2013-05-10)
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auto-discovery of endpoints; however, adding new vocabulary is rather straight-
forward once the mechanisms for discovering such descriptions are in place.

Example Use-case: The use-case application �rst needs to �nd SPARQL
endpoints relevant to the various types of protagonists detectable in, e.g.,
YouTube videos. Although there are a number of potentially relevant endpoints
on the Web (e.g., BBC Music, BBC Programmes, DBTune, DBpedia, Fact-
Forge, Linked Movie DataBase, MusicBrainz, notube, etc.) these are di�cult to
discover automatically, and would probably require manually going through end-
point catalogues to �nd. Furthermore, once these relevant endpoints are iden-
ti�ed, information about their indexed content (coverage, topic, vocabularies,
etc.), functionalities (full-text search, entailment, etc.) and policies (result lim-
its, timeouts, max query rate, etc.) is not available. The developers of the plug-in
will be hampered by a lack of appropriate meta-data for individual endpoints.

3 Features Supported

Service Descriptions are still scarce, making it di�cult to know the functionalities
of an endpoint. Furthermore, endpoints may be non-compliant for the features
they claim to support. In this section, we thus empirically analyse the SPARQL
and SPARQL 1.1 features supported by the 427 public endpoints.

3.1 SPARQL 1.0 Standard Features

Experiments: We �rst analyse which core SPARQL 1.0 features the servers
support. For this, we use a subset of the Data Access Working Group test-cases
for SPARQL 1.0,10 which tests features that a compliant SPARQL implemen-
tation must ful�l. We omit syntax tests and focus on core functionalities.11 For
each query, we test if it runs without throwing an exception: without control over
content, we cannot validate results and hence we may overestimate compliance.
Conversely, although features may be supported, queries can throw exceptions
due to, e.g., timeouts; here we may underestimate feature support.

When presenting the compliance for individual queries, we use an abbreviated
feature algebra (cf. Figure 1). We �rst evaluate support for SPARQL SELECT
queries with a single-triple pattern (sel[.]) and use of core query-clause op-
erators: joins (sel[join]), OPTIONAL (sel[opt]) and UNION (sel[union]).
We also include a query returning 0 results (sel[empty]). Next, we evaluate
compliance for FILTER (fil(.)). For that, we use several o�cial SPARQL op-
erators like regex, IRI and blank node checks (labelled intuitively). We also
check support for datatypes (numeric, strings and booleans). Finally for �lters,
we evaluate the bound-checking function. We then evaluate dataset de�nition
support, checking compliance of FROM (NAMED) and GRAPH operators in

10 http://www.w3.org/2001/sw/DataAccess/tests/r2 (l.a.: 2013-05-10)
11 Queries available at http://labs.mondeca.com/sparqlEndpointsStatus/iswc2013/.
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Fig. 1. SPARQL compliance results (SPARQL 1.0 left, SPARQL 1.1 right)

combination with other standard features. We next check solution modi�ers:
ORDER BY, LIMIT and OFFSET (DESC|ASC), as well as the DISTINCT
and REDUCED keywords for select queries. Finally, we check support for CON-
STRUCT andASK query-types (we omitDESCRIBE since support is optional).

Results: The results for SPARQL compliance are presented in Figure 1 (along-
side SPARQL 1.1 results discussed later). More than half of the 427 endpoints
threw exceptions for all queries. The most common types of exception were con-
nection errors and HTTP-level issues (e.g., 403s and 404s), corresponding with
previous observations when dereferencing the endpoint URI.

Other exceptions depended on the query being sent. Features such as OR-
DER BY, FROM and data-type �lters were particularly problematic. For exam-
ple, while sel[.] was answered by 195 endpoints without exception, adding the
orderby feature meant that the queries were only answered by 129 endpoints.
Some of the di�erential errors were, for example, content type issues (�End-
point returned Content-Type: text/xml which is not currently supported for
SELECT queries�; running these queries manually against the endpoints gave
di�erent generic errors). Non-standard error-reporting made identi�cation of the
root problem di�cult (for us and for potential consumers). For example, a preva-
lent issue was timeouts (since some queries require long processing times) but
only 5 endpoints clearly indicated when a query was too expensive.

3.2 SPARQL 1.1 Early Adopters

SPARQL 1.1 has been recently standardised and adds many new features, in-
cluding sub-queries, aggregates, federation, entailment, updates and so forth. We
now see how many endpoints support novel SPARQL 1.1 features.



Experiments:We now select tests from the SPARQL-WG for SPARQL 1.1.12

We omit testing for SPARQL 1.1 Update since we (hopefully) will not have
write privileges for public endpoints. We do not test entailment since, without
knowledge of the content, we cannot verify if results are entailed or not.

We �rst test support for aggregates, where expressions such as average, max-
imum, minimum, sum and count can be applied over groups of solutions (possi-
bly using an explicit GROUP BY clause). We then test support for sub-queries
(subq) in combination with other features. Next we test support for property-
paths (paths), binding of individual variables (bind), and support for binding
tuples of variables (values). We also check support for new �lter features that
check for the existence of some data (minus, exists), and some new operator
expressions (starts and contains for strings; abs for numerics). Finally, the
last three queries test a miscellany of features including NOT IN used to check
a variable binding against a list of �ltered values (!in), an abbreviated version
of CONSTRUCT queries whereby the WHERE clause can be omitted (cons-),
and support for the SPARQL SERVICE keyword.

Results: In contrast to core SPARQL queries, we now receive syntax errors
that indicate when the SPARQL 1.1 feature in question is not supported. How-
ever, we also encountered timeout errors where the feature may be supported but
could not return a valid response. On the right hand side of Figure 1, we see that
support for SPARQL 1.1 features is more patchy than for core SPARQL. The
abbreviated CONSTRUCT syntax was (relatively) well supported. Conversely,
certain queries were executed by fewer than 40 endpoints, including features re-
lating to string manipulation like CONTAINS, aggregates like SUM, property
paths and VALUES. The di�ering amount of errors in aggregate functions like
SUM or MIN versus AVG or MAX are due to timeouts or errors when ma-
nipulating incorrect datatypes. We highlight support of the SERVICE keyword
in 30 SPARQL endpoints, which can be used to integrate results from several
SPARQL endpoints (tested by invoking DBpedia's SPARQL endpoint).

3.3 Summary of Interoperability

We have seen that over half of the endpoints were not available to answer queries
during these experiments; many endpoints are permanently down, as we will see
later in our availability study. Otherwise, of the core SPARQL features, simple
queries involving SELECT and ASK were executed broadly without exceptions.
However, many endpoints threw exceptions for more complex queries, particu-
larly ORDER BY. We also found early adoption of some SPARQL 1.1 features
amongst the endpoints (and it is indeed still early days).

For the purposes of interoperability, consumers should be able to expect
broad compliance with the original SPARQL speci�cation (and SPARQL 1.1 in
future). We also highlight that standardisation of error messages from endpoints
would greatly aid interoperability. On a side note, we draw attention to the lack

12 http://www.w3.org/2009/sparql/docs/tests/data-sparql11/ (l.a.: 2013-05-10)
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of full-text search functionality in the SPARQL standard. Such a feature is com-
monly required by users of SPARQL stores and thus, many di�erent SPARQL
implementations support custom functions for full-text search.13 The heterogene-
ity for syntax and semantics of full-text search across di�erent engines�and thus
across di�erent endpoints�hinders interoperability for consumers requiring this
commonly implemented feature, where even ad hoc standards would be welcome.

Example Use-case: Per the results of Figure 1, certain query templates
used by the plug-in will succeed for some endpoints and fail for others. For
example, some endpoints may fail to order the album release dates of a given
artist chronologically due to problems with the orderby feature. Other end-
points may fail to count the number of movies in which two actors co-starred
due to a lack of support for the SPARQL 1.1. groupby and count features
(of course, SPARQL 1.1 was only recently standardised). Finally, the lack of
full-text search makes �nding resource descriptions for protagonists di�cult.

4 Performance

We now look at a number of performance issues. We �rst look at the rate at
which endpoints can stream SPARQL results over HTTP, and as a side result,
we capture the result-size thresholds enforced by many endpoints. Next we look
at how fast di�erent types of atomic lookups can be run over the endpoints.
Finally, we measure generic join performance. Throughout, we run queries twice
to compare cold-cache (�rst run) and warm-cache (second run) timings.

4.1 Result Streaming

Experiments:We �rst measure the performance of the endpoints for stream-
ing a large set of results using a query that should be inexpensive to compute:

SELECT * WHERE { ?s ?p ?o } LIMIT 100002

We add an additional 2 results to distinguish cases where the endpoint imple-
ments a results-size threshold of 100,000.

Results: Overall, 233 endpoints (54.6%) returned no results. Only 57 end-
points (13.3%) returned 100,002 results. We found 68 endpoints (15.9%) return-
ing a �round number� of results (x = y×10z for y, z ∈ N and 1 ≤ y ≤ 15) sugges-
tive of a �xed result-size threshold; Table 3 lists the thresholds we encountered
up to 100,000. The remaining 69 endpoints (16.2%) returned a non-round num-
ber of results less than 100,002: almost all returned the same number of results in
cold-cache and warm-cache runs suggesting that the endpoints index fewer than
100,002 triples. However, 10 endpoints from rkbexplorer.com returned 99,882�
99,948 triples, indicating a possible bug in their LIMIT counting.

13 These include: onto:luceneQuery (OWLIM), fti:match (AllegroGraph), bif:contains
(Virtuoso), pf:textMatch (Jena), text:dmetaphone (4store), search:text (Sesame).



Table 3. Result-size thresholds

№ of Results № of Endpoints

500 1
1,000 3
1,500 1
5,000 1
10,000 49
20,000 2
40,000 1
50,000 3
100,000 7

Total: 68
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Fig. 2. Comparing di�erent limit sizes

Regarding runtimes, we only consider endpoints that returned at least 99%
of the limit quota (99,000 results), leaving 75 endpoints (17.6%). The mean cold-
cache query time for these endpoints was 72.3 s (±97.7 s), with a median of 50.7 s,
a minimum of 5.5 s and a maximum of 723.8 s. The high standard deviation
indicates a signi�cant positive skew in the performance of endpoints. The warm
cache values were analogous with a mean of 72.7 s (±97.7 s); the di�erences
with cold cache times were not signi�cant (p ≈ 0.966 using the Wilcoxon Signed
Rank test: a non-parametric test for non-normal matched samples). To estimate
the overhead of HTTP connections for the queries, we also varied the LIMIT
sizes for 50,000, 25,000, 12,500, 6,250 and 3,125 (i.e., 100,000

2n for n from 0�5),
again considering 75 endpoints that �lled 99% of all quotas. Figure 2 presents
the max., mean, median and min. query times for varying LIMIT sizes. We see
that the max. outlier is not due to a �xed HTTP cost. Taking the mean results,
successively doubling the LIMIT from 3,125 �ve times lead to time increases of
2×, 1.4×, 2×, 2.6× & 1.6× respectively. Though means are a�ected by outliers,
query times are not dominated by �xed HTTP costs.

4.2 Atomic Lookups

Experiments: Next we look at the atomic lookup performance of the
SPARQL endpoints. We pose each endpoint with a single lookup as follows:

ASK WHERE { ?s <y> <z> }

We use the URI abbreviations <x>, <y> and <z> to denote an arbitrary fresh
URI not used elsewhere and that will not be mentioned in the content of the
endpoint. We use fresh URIs so as to create lookups that will not return results
from the endpoint, thus factoring out the content stored by that endpoint while
still executing a lookup. We use seven types of single-pattern ASK queries of
the above form: calling the above query an ASKpo query since the predicate
and object are constant, we also generate ASKs, ASKp, ASKo, ASKsp, ASKso,
ASKpo, and ASKspo queries using fresh URIs each time.
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Results: We consider only 139 comparable endpoints (32.6%) that success-
fully returned false in all runs.14 The query-time results for these endpoints are
compared in Figure 3. In the mean case, such lookups take between 270�400 ms,
with the exception of ASKo, which took a mean of 800 ms in the cold run due to
an outlier. The max and 95th-%ile rows indicate a small number of endpoints
taking several seconds even for such simple queries. With respect to warm vs.
cold cache times for the same queries, although the mean warm cache times are
sometimes slower due to outliers, the median warm cache times are slightly faster
in all seven cases, with signi�cant results (p < 0.05, again using the Wilcoxon
Signed Rank test) for all but the ASKpo case (for which p ≈ 0.108).

4.3 Joins

Experiments: We now look at join performance. In order to minimise the
content of the endpoints as a factor, we again rely on queries that perform
lookups on fresh URIs not appearing in the endpoint's content:

SELECT DISTINCT ?s ?p2
WHERE { ?s ?p ?o .
OPTIONAL {?s ?p2 <x> .} }
LIMIT 1000

SELECT DISTINCT ?s ?p2
WHERE { ?s ?p ?o .
OPTIONAL {<x> ?p2 ?s .} }
LIMIT 1000

SELECT DISTINCT ?o ?p2
WHERE { ?s ?p ?o .
OPTIONAL {<x> ?p2 ?o .} }
LIMIT 1000

These three queries respectively measure the performance of three types of
joins: subject�subject joins (s�s), subject�object joins (s�o) and object�object
joins (o�o). Each query asks to perform a lookup for 1,000 unique terms: the
OPTIONAL clause ensures that the query stops after 1,000 terms are returned
while allowing to perform lookups with a controlled number of results (in this

14 53 of the 54 endpoints on the rkbexplorer.com site failed for ASKspo. Furthermore,
the endpoint at http://sparql.data.southampton.ac.uk/ returns true for any ASK
query requesting XML results. Similarly, http://dbtune.org/classical/sparql/ often
erroneously returns true, esp. for warm-cache queries. (l.a.: 2013-05-10)

http://sparql.data.southampton.ac.uk/
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case zero). Returning the ?p2 variable ensures that the OPTIONAL clause can-
not be �compiled away� since the SPARQL engine must execute the clause for
each unique term to check whether ?p2 has any bindings (or is unbound).

Results: Figure 4 presents join-query performance for 122 endpoints (28.6%)
that returned at least 990 results for all six runs. Warm cache queries are faster
for the same query type, with signi�cant results (using Wilcoxon Signed Rank
tests) for s�s joins (p ≈ 0.009) and o�o joins (p ≈ 0), but not for s�o joins
(p ≈ 0.118). In the mean case, the s�* joins took around 2.5 s whereas the o�o
joins took 9 s cold cache and 7.5 s warm cache; slower o�o joins are also evident
in the median case and are not due to outliers (p ≈ 0). We suspect that object
terms (e.g., classes) may be mentioned in thousands of triples and it may thus
require streaming many tuples to meet the 1,000 unique object-term quota.

4.4 Summary of Performance

First, we see that the reliability of many endpoints becomes worse than previ-
ously encountered when issued with a series of non-trivial queries: despite asking
queries that would generally take less than a few seconds to process, and despite
waiting one second between queries, we saw variable reliability of endpoints
across multiple runs. Second, only 57 endpoints returned 100,002 results when
requested, where we found at least 68 endpoints implementing result-size thresh-
olds (such a feature should ideally be noted in an endpoint's Service Description).
Third, we �nd small but often signi�cant improvements in warm cache perfor-
mance. Fourth, median performance times were generally quite reasonable: 0.5
ms per streaming result, 300 ms per ASK query, and 1 ms per join result; we
can thus estimate an average �xed HTTP cost of ∼300 ms per query.

As a key overall conclusion, there is high variance (i.e., positive skew) in
performance for di�erent endpoints when executing analogous queries. To illus-
trate this point, in Figure 5 we present a Lorenz curve for the three types of
performance results. For cold-cache runs of each experiment, we apply the same
�ltering of empty or partial results as before and sum up the total execution time.
We then sort endpoints in ascending order of the amount of execution time taken
for the experiment (summating variations of queries for ask and join) and plot
the Lorenz curve based on x ratio of the fastest endpoints taking y ratio of the
total time taken. For example, taking x = 0.5, we can say that during the join
experiment, 50% of the fastest endpoints took up about 10% of the experiment
time, with the slower 50% taking the remaining 90%. We can also say that the
slowest 10% of endpoints took 45% of the execution time. The equality line plots
the Lorenz curve assuming equally performant endpoints (x = y). Notably, the
Lorenz curves show a similar (skewed) characteristic across all three experiments
with increasing positive skew for increasingly complex queries.

Example Use-case: Performance issues will have obvious consequences for
our use-case plug-in. Even for atomic ASK queries, some endpoints take multi-
ple seconds to respond. Given that the performance of di�erent endpoints over
HTTP can vary by orders of magnitude, the users of the plug-in may have to
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Fig. 6. Evolution of the average endpoint
availability between February 2011 and
April 2013 (inclusive)

wait while results for the video are being collected from slow endpoints, creating
bottle-necks that a�ect the quality and responsiveness of the application. Fur-
thermore, the application developers will have to account for the possibility that
the results they receive from the endpoint may have had a threshold (silently)
applied, particularly if more than 10,000 results are requested.

5 Availability

The previous sections repeatedly suggest that SPARQL endpoint availability
poses a huge obstacle that applications relying on SPARQL technology have to
face. We now explore this issue, considering an endpoint available if it is (1)
accessible using the HTTP SPARQL protocol [6]; (2) able to process a SPARQL
compliant query [18]; and (3) able to respond using SPARQL formats. Given
a set of requests issued at �xed time intervals over a given time period, the
availability of an endpoint in that period is de�ned as the ratio of the total
requests that succeed vs. the total number of requests made.

5.1 Status monitoring

Experiment: To accurately assess the availability of public SPARQL end-
points, we have been continuously monitoring all SPARQL endpoints listed in
DataHub on an hourly basis since February 2011. As of the end of April 2013,
when we collated our results, more than seven million test queries had been
executed. The evolving availability statistics for endpoints are published to a
live, online service.15 In order to accommodate patchy SPARQL compliance (cf.
Section 3), we try two queries to test availability for each endpoint:

15 SPARQL Endpoint Status: http://labs.mondeca.com/sparqlEndpointsStatus/
index.html (l.a.: 2013-05-10)

http://labs.mondeca.com/sparqlEndpointsStatus/index.html
http://labs.mondeca.com/sparqlEndpointsStatus/index.html
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ASK WHERE { ?s ?p ?o . } SELECT ?s WHERE { ?s ?p ?o . } LIMIT 1

If the ASK query fails (e.g., is not supported) we try the SELECT query. We
consider the request successful if we get a valid response for either query.

Results: Based on this 27-month-long experiment, Figure 6 shows that the
mean endpoint availability has been decreasing over time (from 83% in Febru-
ary 2011 to 51% in April 2013), explaining endpoint errors noticed in previous
sections. However, mean availability is a�ected by a growing number of o�ine
endpoints, exempli�ed by Kasabi NASA in Figure 6. The mean trend is not fol-
lowed by all endpoints: for instance, the availability of the DBpedia endpoint16

has always been above 90%, with a mean of 96%. We also highlight the variable
availability pro�le of two prominent �centralised� warehouses�LOD Cache and
FactForge�that index third-party data.

The variance of endpoint-availability pro�les is illustrated by the distribution
presented in Figure 7, where many endpoints fall into one of two extremes: 24.3%
of endpoints are always down whereas 31% of endpoints have an availability
rate higher than 95%. In Figure 8, we additionally plot the evolution of these
distributions across the 27 month long lifespan of the experiment. We again
see many endpoints falling into one of two extremes, with few endpoints in the
aggregate [5, 95] interval. In addition, we see a continuous increase in the number
of new endpoints being listed on DataHub over the past months while, conversely,
the number of endpoints going o�ine continues to grow.

5.2 Summary of Availability

We identify 5 endpoint availability intervals of interest (cf. Figures 7 & 8):

0% to 5% This category, covering 29.3% of endpoints on average, may be qual-
i�ed as �unreliable�. No application should rely on such endpoints.

16 See http://dbpedia.org/sparql (l.a.: 2013-05-10)

http://dbpedia.org/sparql


5% to 75% This �low reliability� category represents 8.7% of endpoints on av-
erage. This category could be used by applications for non-critical updates
that can deal gracefully with no response from endpoints.

75% to 95% On average, 12.4% of endpoints fall into this �medium reliability�
interval, usable for applications with intermittent update requirements.

95% to 99% This �high reliability� category covers 14.4% of endpoints. Appli-
cations that require real-time responses could target this interval (or higher).

99% to 100% On average, 32.2% of endpoints belong to this �very high re-
liability� interval. Applications with strong reliability requirements should
exclusively use this category to deliver good quality of service.

The apparent overall decline in endpoint availability is possibly an e�ect of
maturation. SPARQL is currently moving away from experimentation [14], leav-
ing permanently o�ine endpoints in its wake (e.g. Kasabi endpoints) with fewer
new �experimental� endpoints being reported. However, other endpoints (e.g.,
data.gov) are supported by well-established stakeholders (e.g., U.S. Government)
and are part of a sustainable policy to deliver a high quality of service to end-user
applications. Hence we see the large division in availability pro�les where those
with low availability will inevitably die o� and where those with higher avail-
ability (hopefully) tend towards maturation. Informally, in the nomenclature of
Gartner's hype cycle, we can conjecture that SPARQL has now gone past the
�Peak of In�ated Expectations� leaving some dead endpoints behind.

Example Use-case: With endpoint availability being as patchy as illus-
trated in Figure 8, the developers of our use-case plug-in cannot rely on individ-
ual endpoints to serve the content that users require when users require it. Only
about one-third of the endpoints fall into the very-high reliability bracket, and
even still, an availability of 99% may not be enough, especially when consider-
ing that the plug-in may rely on multiple such endpoints at any given time: if
the developers wish to rely on a federation of multiple independent endpoints,
they must further consider that the availability of the federation as a whole will
e�ectively be a product of the individual availabilities. Even more worryingly
for the developers, endpoints sometimes disappear permanently. For example,
the BBC Music, BBC Programmes and MusicBrainz endpoints are now perma-
nently o�ine: the hosting company (Talis) has discontinued these services. If the
plug-in were dependent on the content provided by these services, their sudden
discontinuation would have severe impact on the use-case application.

6 Conclusion

More than �ve years on from the original SPARQL standard, we have analysed
four key issues in terms of the maturity of the current SPARQL infrastructure
available on the Web today: discoverability, interoperability, efficiency
and reliability. Our experiments have undoubtedly painted a mixed picture
of the maturity of the SPARQL infrastructure: applications built on top of this
infrastructure must cope with the intrinsic characteristic of imperfection and



varying degrees of reliability that one often �nds on the Web. Our experiments
are designed to help inform (potential) practitioners with respect to the potential
pitfalls and opportunities o�ered by this �edgling (and imperfect) infrastructure.

With respect to disseminating results, we continue to host the �SPARQL
Endpoint Status Website�15 for the reference of practitioners such that they can
identify the pro�le of availability that endpoints of interest fall into. In the near
future, we hope to o�er a more complete monitoring tool that runs our experi-
ments at regular intervals, which will help potential consumers identify discov-
erable, interoperable, e�cient and reliable SPARQL endpoints on the Web. We
are also looking into making these up-to-date results available as RDF through
SPARQL, allowing clients to query the behaviour of monitored endpoints.

As for the initial question raised at the outset of this paper: is this novel
decentralised SPARQL infrastructure ready for action? Certainly
for the types of applications exempli�ed by our highlighted use-case�and even
aside from those experimental endpoints that skew our results in a negative
direction�the most appropriate answer for the moment would seem to be: not
yet. However, we hope that this paper will highlight the current challenges faced
and suggest some open issues for the community to address:

Discoverability: Aside from VoID and SPARQL Service Descriptions, how
should SPARQL endpoints describe their content? How can these descrip-
tions be advertised and discovered by potential clients? Perhaps works on
structural summaries [10], cataloguing in dataspaces [7] or routing indexes
in P2P systems [15], may yield insights on how best to describe, advertise
and automatically discover and invoke public SPARQL endpoints.

Interoperability: Certain endpoints do not support certain SPARQL features,
or implement hidden result limits or query timeouts, etc. Thus, how can
Quality-of-Service guarantees and other API policies be made explicit for
clients? Furthermore, how can error reporting be standardised? Such features
would allow clients to implement remote exception handling (e.g., if a query
times out, ask a simpler query). De facto standards for features like full-text
search would also be bene�cial for clients.

Performance: Further work is perhaps required on optimising local evaluation
of SPARQL queries. E�cient support for new SPARQL 1.1 features such
as property-paths, aggregates and entailment is still an open question. An
alternative direction is to de�ne lightweight subsets of SPARQL for which
queries can be executed e�ciently and accurate cost models developed, al-
lowing endpoints to make more reliable guarantees.

Availability: Remote server down-times can be mitigated by local caching, mir-
roring and other replication techniques, where database caching techniques
(e.g., DBCache [4]) seem relevant. Broadly speaking, works on partition tol-
erance or overlay networks in distributed systems may also yield insights
into the question of availability and fault-tolerance.

In conclusion�and as this paper has shown�there are still many challenges
that must be addressed before SPARQL infrastructure will be ready for action.
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