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Abstract. Hundreds of public SPARQL endpoints have been deployed
on the Web, forming a novel decentralised infrastructure for querying bil-
lions of structured facts from a variety of sources on a plethora of topics.
But is this infrastructure mature enough to support applications? For 427
public SPARQL endpoints registered on the DataHub, we conduct vari-
ous experiments to test their maturity. Regarding discoverability, we find
that only one-third of endpoints make descriptive meta-data available,
making it difficult to locate or learn about their content and capabili-
ties. Regarding interoperability, we find patchy support for established
SPARQL features like ORDER BY as well as (understandably) for new
SPARQL 1.1 features. Regarding efficiency, we show that the perfor-
mance of endpoints for generic queries can vary by up to 3—4 orders of
magnitude. Regarding availability, based on a 27-month long monitor-
ing experiment, we show that only 32.2% of public endpoints can be
expected to have (monthly) “two-nines” uptimes of 99-100%.

1 Introduction

Although there are now tens of billions of facts spanning hundreds of Linked
Datasets on the Web, it is still unclear how applications can begin to make effec-
tive use of these data. A foundational requirement for any application is the abil-
ity to discover, access and query the data. Addressing this need, SPARQL—the
query language for RDF—was first standardised in 2008 [18], and an extension in
the form of SPARQL 1.1 was also recently standardised [12]. SPARQL has thus
been a core focus of research and development for Semantic Web technologies
in the past five years, with various research proposals, benchmarks, open-source
and commercial tools emerging to address the challenges of processing SPARQL
queries efficiently, at large scale and in distributed environments.

These advances in SPARQL technology and tools have been paralleled by the
deployment of public SPARQL endpoints on the Web: to date, over four hun-
dred such endpoints have been announced on the DataHub site?, with approx.

4 A central catalogue of Linked Data collections available on the Web: http://datahub.
io/group/lod (l.a.: 2013-05-10)
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68% of official “LLOD Cloud” datasets claiming to host an endpoint.® Prominent
endpoints are now logging significant levels of traffic, where, e.g., studies of logs
from the DBpedia SPARQL engine reveal that it is servicing in the order of hun-
dreds of thousands of queries per day [17,8]. Answering queries that span the
content of these endpoints is then an open research question, and one that has
been tackled by a host of works on SPARQL federation [12,1,3,19,20,16,5,11].

Despite all of this momentum, however, few applications are emerging to
exploit this novel querying infrastructure. In this paper, we thus ask: 1S THIS
NOVEL DECENTRALISED SPARQL INFRASTRUCTURE READY FOR ACTION? Fo-
cusing on the technical challenges (where we rather refer to, e.g., [13, § 2|, for
content-related discussion), we take a list of 427 public SPARQL endpoints from
the DataHub site” and present the following core experiments:

§ 2 We first look at the DISCOVERABILITY of the 427 endpoints, analysing how
endpoints can be located, what meta-data are available for them, etc.

§ 3 We analyse INTEROPERABILITY, using SPARQL 1.0 and SPARQL 1.1 test-
case suites to identify features (not) supported by these endpoints.

§ 4 We tackle EFFICIENCY by testing the time taken by individual endpoints to
answer generic, content-agnostic SPARQL queries over HTTP.

§ 5 We measure RELIABILITY based on a 27-month long monitoring experiment
of the uptimes of public SPARQL endpoints.

EXPERIMENTAL OVERVIEW: All results were collated in May 2013. The most
recent list of endpoints that we retrieved from DataHub contained 427 SPARQL
endpoint URLs. Here considering “pay-level-domains™—the level at which a do-
main can be registered and must be individually paid for—we found 159 domains
hosting the 427 endpoints: a mean of 2.7 £ 6.3 endpoints per domain. 54 (12.6%)
endpoints are hosted by rkbexplorer.com, 37 (8.7%) by bio2rdf.org, 36 (8.4%)
by talis.com, 24 (5.6%) by eagle-i.net, 20 (4.7%) by kasabi.com, etc.

For running queries, we use Apache Jena ARQ 2.9.3 requesting XML or
RDF /XML results, with a first-result timeout of 1 minute and an overall timeout
of 15 minutes. We run queries sequentially and enforce a politeness wait of one
second between the end of execution of one query and the start of the next.

For reproducibility, all code, queries and results relating to this paper—
including larger versions of the graphical figures presented herein—are available
online at http://labs.mondeca.com/sparqlEndpointsStatus/iswc2013/.

ExXAMPLE USE-CASE: To ground our discussion, we refer throughout the pa-
per to a hypothetical use-case involving a plug-in for online video sites such as
YouTube, Vimeo, etc. The plug-in detects protagonists of the video (e.g., the TV
series that the clip is from, the music artist for the track, the location where the

® http://lod-cloud.net/state/ (La.: 2013-05-10)

5 We are unsure what ratio of traffic is automated or for serving dynamic site content.

" The raw list is fetched from the DataHub API: http://datahub.io/api/2/search/
resource?format=api/sparqlé&all_fields=1&limit=10000 (l.a.: 2013-05-10)
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video is taken, etc.) and attempts to discover and query relevant public SPARQL
endpoints for meta-data about the protagonists (and the relationships between
them) such that can be processed and presented to the user in a side-bar.

2 Endpoint Descriptions

A prospective consumer of SPARQL endpoints first needs to DISCOVER relevant
endpoints for their application domain and to discover fundamental meta-data
about the policies, features and content of those endpoints. We identify two main
vocabularies that current SPARQL endpoints use to describe their features and
content: VoID [2] and SPARQL 1.1 Service Descriptions [21].

2.1 VoID Catalogues

To find relevant endpoints, a consumer may follow our method of using the
DataHub catalogue: however, aside from just URLs, the consumer will also need
a description of the content of that endpoint to determine its relevance. Relat-
edly, the VoID vocabulary can be used to create meta-data describing an RDF
dataset, including statistics about size, schema terms used, frequencies of terms,
access mechanisms, URI patterns mentioned, a link to an OpenSearch Descrip-
tion Document, as well as a link to a relevant endpoint. In fact, VoID is used by
some federated SPARQL engines to delegate and optimise sub-queries [11].

EXPERIMENTS: We identify two primary online catalogues that an agent could
query to find relevant SPARQL endpoints. The first is the aforementioned
DataHub catalogue. The second is the “VoID store”® hosted by the RKBEx-
plorer project [9]. We issue the following template query to both:

PREFIX void: <http://rdfs.org/ns/void#>
SELECT DISTINCT 7ds
WHERE { ?ds a void:Dataset ; void:sparqlEndpoint %%ep . }

We instantiate this query for each of the 427 endpoints by substituting the
placeholder “%%ep” with the given service URI. We then execute each query
against the two catalogue interfaces. We also execute the query directly against
the endpoint itself in case it indexes its own VoID description and look in well-
known locations for VoID descriptions on the host site.

REsuULTS: We found that the DataHub catalogues returned results for 142 end-
points (33.3%) and the VoID store catalogue returned results for 96 queries
(22.4%). The most common location for these VoID files was in either the root
folder or a models/ folder with filename void.ttl. Surprisingly, we found that
only 69 endpoints (16.2%) indexed the VoID description about themselves. Us-
ing well-known locations” instead of querying catalogues or endpoints, we did

8 http://void.rkbexplorer.com/sparql/ (l.a.: 2013-05-10)
9 http://vocab.deri.ie/void/autodiscovery; (l.a.: 2013-05-10).
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Table 2. Server names

Table 1. Number of endpoint descriptions
in HTTP Get responses

containing SD and VoID properties

Server-field Prefix Ne

Predicate Ne Predicate Ne

- - Apache 157
sd:resultFormat 38 void:sparqlEndpoint 5 Virtuoso 71
sd:feature 36 void:classes 2 Jetty 25
sd:supportedLanguage 36 void:datadump 2 nginx 23
sd:url 34 void:triples 2 Fuseki 6
sd:endpoint 33 void:vocabulary 2 4s-httpd 3

not find any VoID files. In summary, we see that discoverable VoID descriptions
for the content of public endpoints are sparse.

2.2 SPARQL 1.1 Service Descriptions

Once the consumer has located an endpoint relevant to their needs (be it using
a VoID description or by other means), they will need meta-data about the
capabilities of the endpoint: which query features are supported, are updates
allowed, what I/O formats are supported, how default and named graphs are
configured, how/what entailments are supported, etc. Such capabilities can now
be described using the SPARQL 1.1 Service Description (SD) vocabulary [21].

EXPERIMENTS: The Service Description of an endpoint can be retrieved by
dereferencing the endpoint URI itself [21]. We thus performed a HTTP Get
request for each of the 427 endpoint URIs, following redirects, requesting RDF
formats (viz. RDF /XML, N-Triples, Turtle or RDFa). We also check the resulting
HTTP headers for interesting meta-data relating to the endpoint.

REsuLTS: In total, 151 lookups (35.4%) returned a 200 OK response code,
where only 51 endpoints (11.9%) returned an RDF-specific content type (RD-
F/XML) and 95 endpoints (22.2%) returned the typical HTML query interface
(without embedded RDFa). We received 173 “4xx” responses (40.5%) indicat-
ing client-side errors and 47 “5xx” responses (11%) indicating server-side errors.
(Section 5 will refer to these availability issues in greater detail.)

We then inspected the dereferenced content for SD and VoID meta-data using
Apache Any23 Java library'" to extract RDF. Table 1 lists the top-5 SD and
VoID properties by the number of descriptions they appear in (note: sd:url is a
non-standard term). We found 39 endpoints (9.1%) offering some SD meta-data
and a handful providing VoID meta-data by dereferencing.

Finally, we checked the HTTP response headers for meta-data about the
underlying SPARQL service. The most interesting meta-data came from the
Server field, which sometimes identified the SPARQL engine powering the end-
point. Table 2 lists some common values found: though most values still referred
to generic Web servers such as Apache, we could identify Virtuoso, Fuseki and
4store SPARQL implementations from the Server field.

10 http://any23.apache.org/ (l.a.: 2013-05-10)
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2.3 Summary of Discoverability

We identify two existing RDF vocabularies that can be used to “advertise” the
content and features of an endpoint respectively, potentially allowing for remote
discovery. However, locating such descriptions is difficult. Catalogues provide
VoID descriptions for about one-third of the endpoints, and other methods of
finding VoID descriptions are largely unsuccessful: in most cases, the VoID de-
scriptions probably do not exist. Where available, SD meta-data is easy to find
using “follow-your-nose” principles, but being a relatively new W3C proposal, is
supported by fewer than one-tenth of endpoints.

A core question we have not tackled is whether or not the SD and VoID vo-
cabularies offer the terms required to enable mature auto-discovery of endpoints
by consumers. In fact, this is not a major issue: as per the de facto nature of
VoID, RDF descriptions allow for the extension or introduction of vocabular-
ies to meet consumers’ needs as they arise, enabling richer descriptions. Hence,
we rather highlight the need for adoption of common mechanisms to discover
endpoints and their descriptions (such as catalogues and dereferencing) in this
infrastructure: the content of these descriptions can evolve naturally.

EXAMPLE USE-CASE: The use-case application first needs to find SPARQL
endpoints relevant to the various types of protagonists detectable in, e.g.,
YouTube videos. Although there are a number of potentially relevant endpoints
on the Web (e.g., BBC Music, BBC Programmes, DBTune, DBpedia, Fact-
Forge, Linked Movie DataBase, MusicBrainz, notube, etc.) these are difficult to
discover automatically, and would probably require manually going through end-
point catalogues to find. Furthermore, once these relevant endpoints are iden-
tified, information about their indexed content (coverage, topic, vocabularies,
etc.), functionalities (free-text search, entailment, etc.) and policies (result lim-
its, timeouts, max query rate, etc.) is not available. The developers of the plug-in
will be hampered by a lack of appropriate meta-data for individual endpoints.

3 Features Supported

SPARQL Service Descriptions are still scarce, making it difficult to know the
functionalities of an endpoint. Furthermore, endpoints may be non-compliant for
the features they claim to support. In this section, we thus empirically analyse
the SPARQL and SPARQL 1.1 features supported by the 427 public endpoints.

3.1 SPARQL 1.0 Standard Features

EXPERIMENTS: We first analyse which core SPARQL 1.0 features the servers
support. For this, we use a subset of the Data Access Working Group test-cases
for SPARQL 1.0,'" which tests features that a compliant SPARQL implemen-
tation must fulfil. We omit syntax tests and focus on core functionalities.'? For

" http://www.w3.0org/2001/sw/DataAccess/tests/r2 (l.a.: 2013-05-10)
12 Queries available at http://labs.mondeca.com/sparqlEndpointsStatus/iswc2013/.
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each query, we test if it runs without throwing an exception: without control over
content, we cannot validate results and hence we may overestimate compliance.

When presenting the compliance for individual queries, we use an abbreviated
feature algebra (cf. Figure 1). We first evaluate support for SPARQL SELECT
queries with a single-triple pattern (SEL[.]) and use of core query-clause op-
erators: joins (SEL[JOIN]), OPTIONAL (SEL[OPT|) and UNION (SEL[UNION]).
We also include a query returning 0 results (SEL[EMPTY]). Next, we evaluate
compliance for FILTER (FIL(.)). For that, we use several official SPARQL op-
erators like regex, IRI and blank node checks (labelled intuitively). We also
check support for datatypes (numeric, strings and booleans). Finally for filters,
we evaluate the bound-checking function. We then evaluate dataset definition
support, checking compliance of FROM (NAMED) and GRAPH operators in
combination with other standard features. We next check solution modifiers:
ORDER BY, LIMIT and OFFSET (DESC|ASC), as well as the DISTINCT
and REDUCED keywords for select queries. Finally, we check support for CON-
STRUCT and ASK query-types (we omit DESCRIBE since support is optional).

REsuULTS: The results for SPARQL compliance are presented in Figure 1 (along-
side SPARQL 1.1 results discussed later). More than half of the 427 endpoints
threw exceptions for all queries. The most common types of exception were con-
nection errors and HTTP-level issues (e.g., 403s and 404s), corresponding with
previous observations when dereferencing the endpoint URIL.

Other exceptions depended on the query being sent. Features such as OR-
DER BY, FROM and data-type filters were particularly problematic. For exam-
ple, while SEL[.] was answered by 195 endpoints without exception, adding the
ORDERBY feature meant that the queries were only answered by 129 endpoints.
For example, some of the differential errors were content type issues (“End-
point returned Content-Type: text/xml which is not currently supported for
SELECT queries”; running these queries manually against the endpoints gave
different generic errors). Non-standard error-reporting made identification of the
root problem difficult (for us and for potential consumers). For example, a preva-
lent issue was time-outs (since some queries require long processing times) but
only 5 endpoints clearly indicated when a query was too expensive.

3.2 SPARQL 1.1 Early Adopters

Given that SPARQL 1.1 has been recently standardised, we could well expect
a number of early adopters of the extensions to be online (esp. since implemen-
tation reports are required to fulfil the requirements for this W3C status'?).
SPARQL 1.1 adds many new features, including sub-queries, variable binding,
aggregates, basic query federation, entailment, updates and so forth. We now
see how many endpoints are supporting novel SPARQL 1.1 features.

EXPERIMENTS: We this time select tests from the SPARQL-WG for SPARQL
1.1.'* We omit testing for SPARQL 1.1 Update since we (hopefully) will not have

13 http://www.w3.org/2009/sparql/implementations/ (l.a.: 2013-05-10)
1 http://www.w3.0org/2009/spargl/docs/tests/data-sparql11/ (La.: 2013-05-10)


http://www.w3.org/2009/sparql/implementations/
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/

SEL|.

SEL[JOIN

SEL|OPT
SEL[UNION
SEL[EMPTY
SEL|FIL(REGEX)]
SEL[FIL(REGEX-I)|
SEL|FIL(BLANK)
SEL|FIL(IRT)
SEL[FIL(NUM)
)

)

SEL[FIL(BOOL
SEL[FIL(!BOUND)
SEL|BNODE
SEL|FROM
SEL|GRAPH
SEL|GRAPH;JOIN
SEL|GRAPH;UNION
SEL[.|*ORDERBY
SEL[.|*ORDERBY*OFFSET
SEL[.|*ORDERBY-ASC
SEL|.]*ORDERBY-DESC
SEL-DISTINCT|.
SEL-REDUCED|.
CON|.
CON[JOIN
CON[OPT
ASK|.

0 25 50 75 100 125 150 175 200
Ne of compliant endpoints

SEL[AVG]| 1
SEL|AVG|*GROUPBY |
SEL[MAX]
SEL|MIN| - —
SEL[SUM | -
SEL[COUNT|*GROUPBY
SEL[SUBQ]|
SEL[SUBQ;GRAPH]|
SEL|PATHS| |
SEL|[BIND| |
SEL|VALUES)|
SEL[MINUS|
SEL[FIL(EXISTS)]
SEL[FIL(!EXISTS)|
SEL[FIL(START) | -
SEL|FIL(CONTAINS ) |
SEL[FIL(ABS)]
ASK[FIL(!IN)| - e
CON-|.|

SEL[SERVICE| — F
0 25 50 75 100 125 150 175 200
Ne of compliant endpoints

Fig. 1. SPARQL compliance results (SPARQL 1.0 left, SPARQL 1.1 right)

write privileges for public endpoints. We do not test entailment since, without
knowledge of the content, we cannot verify if results are entailed or not.

We first test support for aggregates, where expressions such as average, max-
imum, minimum, sum and count can be applied over groups of solutions (possi-
bly using an explicit GROUP BY clause). We then test support for sub-queries
(SUBQ) in combination with other features. Next we test support for property-
paths (PATHS), binding of individual variables (BIND), and support for binding
tuples of variables (VALUES). We also check support for new filter features that
check for the existence of some data (MINUS, EXISTS), and some new operator
expressions (STARTS and CONTAINS for strings; ABS for numerics). Finally, the
last three queries test a miscellany of features including NOT IN used to check
a variable binding against a list of filtered values (!IN), an abbreviated version
of CONSTRUCT queries whereby the WHERE clause can be omitted (CONs-),
and support for the SPARQL SERVICE keyword.

REsULTS: In contrast to core SPARQL queries, we now receive syntax errors
that unambiguously indicate when the SPARQL 1.1 feature in question is not
supported. In the lower part of Figure 1, it is possible to see that 16 SPARQL 1.1
queries were answered by some of the endpoints: the abbreviated CONSTRUCT
syntax was the most widely supported “feature”. Conversely, some queries could
not be executed by most endpoints, including features relating to string ma-
nipulation like CONTAINS, property paths and VALUES. Also, the differing
amount of errors in aggregate functions like SUM or MIN with others like AVG
are due to time outs (indicating also a non-supported feature) or errors when
manipulating wrong datatypes. We highlight support of the SERVICE keyword



in 30 SPARQL endpoints, which can be used to integrate results from several
SPARQL endpoints (tested by invoking DBpedia’s SPARQL endpoint).

3.3 Summary of Interoperability

We have seen that over half of the endpoints were not available to answer queries
during these experiments; many endpoints are permanently down, as we will see
later in our availability study. Otherwise, of the core SPARQL features, simple
queries involving SELECT and ASK were executed broadly without exceptions.
However, many endpoints threw exceptions for more complex queries, particu-
larly ORDER BY. We also demonstrated some early adoption of some SPARQL
1.1 features amongst the endpoints (and it is indeed still early days).

For the purposes of interoperability, consumers should be able to expect
broad compliance with the original SPARQL specification (and SPARQL 1.1 in
future). Furthermore, we highlight that standardisation of error messages from
endpoints would greatly aid interoperability. On a side note, we draw attention
to the lack of full-text search functionality in the SPARQL standard. Such a
feature is commonly required by users of SPARQL stores and thus, many differ-
ent SPARQL implementations support custom functions for full-text search.!®
The heterogeneity for syntax and semantics of full-text search across different
engines—and thus across different endpoints—hinders interoperability for con-
sumers requiring this commonly implemented feature.

EXAMPLE USE-CASE: Per the results of Figure 1, certain query templates used
by the plug-in will succeed for some endpoints and fail for others. For example,
some endpoints may fail to order the album release dates of a given artist chrono-
logically due to problems with the ORDERBY feature. Other endpoints may fail
to count the number of movies in which two actors co-starred due to a lack of
support for the SPARQL 1.1. GROUPBY and COUNT features (of course, SPARQL
1.1 was only recently standardised). Finally, the lack of free-text search makes
finding resource descriptions for protagonists difficult, requiring the plug-in to
find an exact label match for relevant entities.

4 Performance

We now look at a number of performance issues. We first look at the rate at
which endpoints can stream SPARQL results over HT'TP, and as a side result,
we capture the result-size thresholds enforced by many endpoints. Next we look
at how fast different types of atomic lookups can be run over the endpoints.
Finally, we measure generic join performance. Throughout, we run queries twice
to compare cold-cache (first run) and warm-cache (second run) timings.

!5 These include: onto:luceneQuery (OWLIM), fti:match (AllegroGraph), bif:contains
(Virtuoso), pf:textMatch (Jena), text:dmetaphone (4store), search:text (Sesame).
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4.1 Result Streaming

EXPERIMENTS: We first measure the performance of the endpoints for stream-
ing a large set of results using a query that should be inexpensive to compute:

SELECT * WHERE { 7?s ?p 7o } LIMIT 100002

We add an additional 2 results to distinguish cases where the endpoint imple-
ments a results-size threshold of 100,000.

REsuULTS: Overall, 233 endpoints (54.6%) returned no results. Only 57 end-
points (13.3%) returned 100,002 results. We found 68 endpoints (15.9%) re-
turning a “round number” of results (x = y x 10 for y,2 € N and 1 < y < 15)
suggestive of a fixed result-size threshold; Table 3 lists the thresholds we encoun-
tered up to 100,000. The remaining 69 endpoints (16.2%) returned a non-round
number of results less than 100,002: almost all returned the same number of
results in cold-cache and warm-cache runs suggesting that the endpoints index
fewer than 100,002 triples. However, 10 endpoints from rkbexplorer.com re-
turned 99,882-99,948 triples, indicating a possible bug in their LIMIT counting.

Regarding runtimes, we only consider endpoints that returned at least 99%
of the limit quota (99,000 results), leaving 75 endpoints (17.6%). The mean
cold-cache query time for these endpoints was 72.3 s (£97.7 s), with a median
of 50.7 s, a minimum of 5.5 s and a maximum of 723.8 s. The high standard
deviation indicates a significant positive skew in the performance of endpoints.
The warm cache values were analogous with a mean of 72.7 s (£97.7 s) actually
indicating slightly slower performance. To estimate the overhead of establishing
HTTP connections for the queries, we also varied the LIMIT sizes for 50,000,
25,000, 12,500, 6,250 and 3,125 (i.e., 12:2% for n from 0-5), again considering
75 endpoints that filled 99% of all quotas. Figure 2 presents the max., mean,
median and min. query times for varying LIMIT sizes. We see that the max.
outlier is not due to a fixed HT'TP cost. Taking the mean results, successively
doubling the LIMIT from 3,125 five times lead to time increases of 2x, 1.4x,
2x,2.6x & 1.6x respectively. Though means are affected by outliers, we can see
that query times are not dominated by fixed HT'TP costs.
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4.2 Atomic Lookups

EXPERIMENTS: Next we look at the atomic lookup performance of the
SPARQL endpoints. We pose each endpoint with a single lookup as follows:

ASK WHERE { ?s <y> <z> }

We use the URI abbreviations <x>, <y> and <z> to denote an arbitrary fresh
URI not used elsewhere and that will not be mentioned in the content of the
endpoint. We use fresh URIs so as to create lookups that will not return results
from the endpoint, thus factoring out the content stored by that endpoint while
still executing a lookup. We use seven types of single-pattern ASK queries of the
above form, varying the position of constants. We call the above query a ASK,,
query since the predicate and object are constant. We generate ASK,, ASK,,

ASK,, ASK,p, ASKs, ASKp,, ASK,p, queries using fresh URIs each time.

REsULTS: We consider only 139 comparable endpoints (32.6%) that success-
fully returned false in all runs.'® The query-time results for these endpoints are
compared in Figure 3. In the mean case, such lookups take between 270-400
ms, with the exception of ASK,, which took a mean of 800 ms in the cold
run due to an outlier. The MAX and 95""-%ILE rows indicate a small number
of endpoints taking several seconds even for such simple queries. In general,
we see little difference between cold cache and warm cache times, with warm
cache queries occasionally being slower, primarily due to outliers. Perhaps more
tellingly, median (i.e., 50*"-%ILE) times are comparable across the board.

16 53 of the 54 endpoints on the rkbexplorer.com site failed for ASKsp,. Furthermore,
the endpoint at http://sparqgl.data.southampton.ac.uk/ returns true for any ASK
query requesting XML results. Similarly, http://dbtune.org/classical/sparql/ often
erroneously returns true, esp. for warm-cache queries. (lL.a.: 2013-05-10)
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4.3 Joins

EXPERIMENTS: We now look at join performance. In order to minimise the
content of the endpoints as a factor, we again rely on queries that perform
lookups on fresh URIs not appearing in the endpoint’s content:

SELECT DISTINCT 7s 7p2 SELECT DISTINCT 7s 7p2 SELECT DISTINCT 70 7p2
WHERE { ?s 7p 70 . WHERE { 7s 7p 70 . WHERE { 7s 7p 70 .
OPTIONAL {?s 7p2 <z> .} } OPTIONAL {<x> 7p2 ?s .} } OPTIONAL {<x> 7p2 70 .} }
LIMIT 1000 LIMIT 1000 LIMIT 1000

These three queries respectively measure the performance of three types of
joins: subject—subject joins (s—s), subject—object joins (s—0) and object—object
joins (0—0). Each query asks to perform a lookup for 1,000 unique subjects: the
OPTIONAL clause ensures that the query stops after 1,000 results are returned
while allowing to perform lookups with a controlled number of results (in this
case zero), and returning the ?p2 variable ensures that the OPTIONAL clause
cannot be “compiled away” since the SPARQL engine must execute the clause
to check whether ?p2 has any bindings (or is unbound).

REsULTS: Figure 4 presents join-query performance for 122 endpoints (28.6%)
that returned at least 990 results for all six runs. In the mean case, the s—* joins
took 2.5 s whereas the o—o join took 9 s cold cache and 7.5 s warm cache; such
variance in performance for different joins is also evident in the median case
and is not due to outliers. We suspect that object terms (e.g., classes) may be
mentioned in thousands of triples and thus may require lots of streaming to meet
the 1000 unique object-term quota. We generally see little to distinguish cold
cache and warm cache performance.

4.4 Summary of Performance

First, we see that the reliability of many endpoints becomes worse than previ-
ously encountered when issued with a series of non-trivial queries: despite asking
queries that would generally take less than a few seconds to process, and despite
waiting one second between queries, we saw variable reliability of endpoints
across multiple runs. Second, only 57 endpoints returned 100,002 results when
requested, where we found at least 68 endpoints implementing result-size thresh-
olds (such a feature should ideally be noted in an endpoint’s service description).
Third, we generally find it difficult to distinguish between cold and warm cache
performance. Fourth, median performance times were generally quite reasonable:
0.5 ms per streaming result, 300 ms per ASK query, and 1 ms per join result;
we can thus estimate an average fixed HTTP cost of ~300 ms per query.

As a key overall conclusion, there is high variance (i.e., positive skew) in per-
formance for different endpoints when executing analogous queries. To illustrate
this, in Figure 5 we present a Lorenz curve for the three types of performance
results. For cold-cache runs of each experiment, we apply the same filtering of
empty or partial results as before and sum up the total execution time. We then
order endpoints in ascending order of the amount of execution time taken for
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Fig. 5. Lorenz curves for total execution Fig. 6. Evolution of the average endpoint
times of streaming (limit), lookup (ask) availability between February 2011 and
and join queries. April 2013 (inclusive)

the experiment (summating variations of queries for ask and join). We then plot
the Lorenz curve based on x ratio of the fastest endpoints taking y ratio of the
total time taken. For example, taking x = 0.5, we can say that during the join
experiment, 50% of the fastest endpoints took up about 10% of the experiment
time, with the slower 50% taking the remaining 90%. We can also say that the
slowest 10% of endpoints took 45% of the execution time. The equality line plots
the Lorenz curve assuming equally performant endpoints (x = y). Notably, the
Lorenz curves show a similar (skewed) characteristic across all three experiments
with increasing positive skew for increasingly complex queries.

EXAMPLE USE-CASE: Performance issues will have obvious consequences for
our use-case plug-in. Even for atomic ASK queries, some endpoints take multi-
ple seconds to respond. Given that the performance of different endpoints over
HTTP can vary by orders of magnitude, the users of the plug-in may have to
wait while results for the video are being collected from slow endpoints, creating
bottle-necks that affect the quality and responsiveness of the application.

5 Availability

The previous sections repeatedly suggest that SPARQL endpoint availability
poses a huge obstacle that applications relying on SPARQL technology have to
face. We now explore this issue, considering an endpoint available if it is (1)
accessible using the HTTP SPARQL protocol [6]; (2) able to process a SPARQL
compliant query [18]; and (3) able to respond using SPARQL formats. Given
a set of requests issued at fixed time intervals over a given time period, the
availability of an endpoint in that period is defined as the ratio of the total
requests that succeed vs. the total number of requests made.



5.1 Status monitoring

EXPERIMENT: To accurately assess the availability of public SPARQL end-
points, we have been continuously monitoring all SPARQL endpoints listed in
DataHub on an hourly basis since February 2011. As of the end of April 2013,
when we collated our results, more than seven million test queries had been
executed. The evolving availability statistics for endpoints are published to a
live, online service.!”. In order to accommodate patchy SPARQL compliance
(cf. Section 3), we try two queries to test availability for each endpoint:

ASK WHERE{ 7s 7p 70 . } SELECT ?s WHERE{ ?s ?p 70 . } LIMIT 1

If the ASK query fails (e.g., is not supported) we try the SELECT query. We
consider the request successful if we get a valid response for either query.

REsULTS: Based on this 27-month-long experiment, Figure 6 shows that the
mean endpoint availability has been decreasing over time (from 83% in Febru-
ary 2011 to 51% in April 2013), explaining endpoint errors noticed in previous
sections. However, mean availability is affected by a growing number of offline
endpoints, exemplified by KAsABI NASA in Figure 6. The mean trend is not fol-
lowed by all endpoints: for instance, the availability of the DBpedia endpoint'®
has always been above 90%, with a mean of 96%. We also highlight the variable
availability profile of two prominent “centralised” warehouses—LOD CACHE and
FACTFORGE—that index third-party data.

The variance of endpoint-availability profiles is illustrated by the distribution
presented in Figure 7, where many endpoints fall into one of two extremes: 24.3%
of endpoints are always down whereas 31% of endpoints have an availability
rate higher than 95%. In Figure 8, we additionally plot the evolution of these
distributions across the 27 month long lifespan of the experiment. We again
see many endpoints falling into one of two extremes, with few endpoints in the
aggregate [5, 95] interval. In addition, we see a continuous increase in the number
of new endpoints being listed on DataHub over the past months while, conversely,
the number of endpoints going offline continues to grow.

5.2 Summary of Availability

We identify 5 endpoint availability intervals of interest (cf. Figures 7 & 8):

0% to 5% This category, covering 29.3% of endpoints on average, may be qual-
ified as “unreliable”. No application should rely on such endpoints.

5% to 75% This “low reliability” category represents 8.7% of endpoints on av-
erage. This category could be used by applications for non-critical updates
that can deal with no response from endpoints.

17 SPARQL Endpoint Status Website: http://labs.mondeca.com/
sparqlEndpointsStatus/index.html (l.a.: 2013-05-10)
'8 See http://dbpedia.org/sparql (La.: 2013-05-10)
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75% to 95% On average, 12.4% of endpoints fall into this “medium reliability”
interval, usable for applications with intermittent update requirements.
95% to 99% This “high reliability” category covers 14.4% of endpoints. Appli-
cations that require real-time responses could target this interval (or higher).

99% to 100% On average, 32.2% of endpoints belong to this “very high re-
liability” interval. Applications with strong reliability requirements should
exclusively use this category to deliver a high quality of service.

The apparent overall decline in endpoint availability is possibly an effect of
maturation. SPARQL is currently moving away from experimentation [14], leav-
ing permanently offline endpoints in its wake (e.g. Kasabi endpoints) with fewer
new “experimental” endpoints being reported. However, other endpoints (e.g.,
data.gov) are supported by well-established stakeholders (e.g., U.S. Government)
and are part of a sustainable policy to deliver a high quality of service to end-user
applications. Hence we see the large division in availability profiles where those
with low availability will inevitably die off and where those with higher avail-
ability (hopefully) tend towards maturation. Informally, in the nomenclature of
Gartner’s hype cycle, we can conjecture that SPARQL has now gone past the
“Peak of Inflated Expectations” leaving some dead endpoints behind.

ExAMPLE UsEe-cASE: With endpoint availability being as patchy as illustrated
in Figure 8, the developers of our use-case plug-in cannot rely on individual end-
points to serve the content that users require when users require it. Only about
one-third of the endpoints fall into the very-high reliability bracket, and even
still, an availability of 99% may not be enough, especially when considering that
the plug-in may rely on multiple such endpoints at any given time. Even more
worryingly for the developers, endpoints sometimes disappear permanently. For
example, the BBC Music, BBC Programmes and MusicBrainz endpoints are now
permanently offline: the hosting company (Talis) has discontinued these services.
If the plug-in were dependent on the content provided by these services, their
sudden discontinuation would have severe impact on the use-case application.



6 Conclusion

More than five years on from the original SPARQL standard, we have analysed
four key issues in terms of the maturity of the current SPARQL infrastructure
available on the Web today: DISCOVERABILITY, INTEROPERABILITY, EFFICIENCY
and RELIABILITY. Our experiments have undoubtedly painted a mixed picture
of the maturity of the SPARQL infrastructure: applications built on top of this
infrastructure must cope with the intrinsic characteristic of imperfection and
varying degrees of reliability that one often finds on the Web. Our experiments
are designed to help inform (potential) practitioners with respect to the potential
pitfalls and opportunities offered by this fledgling (and imperfect) infrastructure.

With respect to disseminating results, we continue to host the “SPARQL
Endpoint Status Website”!” for the reference of practitioners such that they
can identify the profile of availability that endpoints of interest fall into. In the
near future, we hope to offer a more complete monitoring tool that runs our
experiments at regular intervals, which will help potential consumers identify
discoverable, interoperable, efficient and reliable SPARQL endpoints on the Web.

As for the initial question raised at the outset of this paper: is this novel
decentralised SPARQL infrastructure ready for action? Certainly for the types
of applications exemplified by our highlighted use-case—and even aside from
those experimental endpoints that skew our results in a negative direction—the
most appropriate answer for the moment would seem to be: not yet. However,
we hope that this paper will highlight the current challenges faced and suggest
some open issues for the community to address:

Discoverability: Aside from VoID and SPARQL Service Descriptions, how
should SPARQL endpoints describe their content? How can these descrip-
tions be advertised and discovered by potential clients? Perhaps works on
structural summaries [10], cataloguing in dataspaces [7] or routing indexes
in P2P systems [15] may yield insights for answering this question.

Interoperability: Certain endpoints do not support certain SPARQL features,
or implement hidden result limits or query timeouts, etc. Thus, how can
Quality-of-Service guarantees and other API policies be made explicit for
clients? Furthermore, how can error reporting be standardised? Such features
would allow clients to implement remote exception handling (e.g., if a query
times out, ask a simpler query). De facto standards for features like full-text
search would also be beneficial for clients.

Performance: Further work is perhaps required on optimising local evaluation
of SPARQL queries. Efficient support for new SPARQL 1.1 features such
as property-paths, aggregates and entailment is still an open question. An
alternative direction is to define lightweight subsets of SPARQL for which
queries can be executed efficiently and accurate cost models developed, al-
lowing endpoints to make more reliable guarantees.

Availability: Remote server down-times can be mitigated by local caching, mir-
roring and other replication techniques, where database caching techniques



(e.g., DBCache [4]) seem relevant. Broadly speaking, works on partition tol-
erance or overlay networks in distributed systems may also yield insights
into the question of availability and fault-tolerance.

In conclusion—and as this paper has shown—there are still many challenges

that must be addressed before SPARQL infrastructure will be ready for action.
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